当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi‐Level Switching of Spin‐Torque Ferromagnetic Resonance in 2D Magnetite
Advanced Science ( IF 15.1 ) Pub Date : 2024-05-05 , DOI: 10.1002/advs.202401944
Zhiyan Jia 1, 2 , Qian Chen 3, 4 , Wenjie Wang 2, 5 , Rong Sun 2 , Zichao Li 6 , René Hübner 6 , Shengqiang Zhou 6 , Miming Cai 7 , Weiming Lv 4 , Zhipeng Yu 4 , Fang Zhang 1 , Mengfan Zhao 1 , Sen Tian 1 , Lixuan Liu 1 , Zhongming Zeng 4 , Yong Jiang 1 , Zhongchang Wang 2, 8
Affiliation  

2D magnetic materials hold substantial promise in information storage and neuromorphic device applications. However, achieving a 2D material with high Curie temperature (TC), environmental stability, and multi‐level magnetic states remains a challenge. This is particularly relevant for spintronic devices, which require multi‐level resistance states to enhance memory density and fulfil low power consumption and multi‐functionality. Here, the synthesis of 2D non‐layered triangular and hexagonal magnetite (Fe3O4) nanosheets are proposed with high TC and environmental stability, and demonstrate that the ultrathin triangular nanosheets show broad antiphase boundaries (bAPBs) and sharp antiphase boundaries (sAPBs), which induce multiple spin precession modes and multi‐level resistance. Conversely, the hexagonal nanosheets display slip bands with sAPBs associated with pinning effects, resulting in magnetic‐field‐driven spin texture reversal reminiscent of “0” and “1” switching signals. In support of the micromagnetic simulation, direct explanation is offer to the variation in multi‐level resistance under a microwave field, which is ascribed to the multi‐spin texture magnetization structure and the randomly distributed APBs within the material. These novel 2D magnetite nanosheets with unique spin textures and spin dynamics provide an exciting platform for constructing real multi‐level storage devices catering to emerging information storage and neuromorphic computing requirements.

中文翻译:

二维磁铁矿中自旋扭矩铁磁共振的多级切换

二维磁性材料在信息存储和神经形态设备应用中具有巨大的前景。然而,实现具有高居里温度的二维材料(时间C)、环境稳定性和多级磁态仍然是一个挑战。这对于自旋电子器件尤其重要,它需要多级电阻态来提高存储密度并实现低功耗和多功能。在这里,合成了二维非层状三角形和六方磁铁矿(Fe34)纳米片被提议具有高时间C和环境稳定性,并证明超薄三角形纳米片表现出宽的反相边界(bAPB)和尖锐的反相边界(sAPB),从而诱导多种自旋进动模式和多​​级电阻。相反,六边形纳米片显示出具有与钉扎效应相关的sAPB的滑移带,导致磁场驱动的自旋纹理反转,让人想起“0”和“1”切换信号。为了支持微磁模拟,直接解释了微波场下多级电阻的变化,这归因于材料内的多自旋织构磁化结构和随机分布的APB。这些具有独特自旋纹理和自旋动力学的新型二维磁铁矿纳米片为构建真正的多层存储设备提供了一个令人兴奋的平台,以满足新兴的信息存储和神经形态计算需求。
更新日期:2024-05-05
down
wechat
bug