当前位置: X-MOL 学术J. Comput. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Nobel history of computational chemistry. A personal perspective
Journal of Computational Chemistry ( IF 3 ) Pub Date : 2024-05-03 , DOI: 10.1002/jcc.27383
Russell J. Boyd 1
Affiliation  

1 INTRODUCTION

This article presents a personal view of selected Nobel Prizes in Chemistry. It is neither a comprehensive account of the science for which the Prizes were awarded, nor does it offer complete biographies of a remarkable group of scientists. It attempts to show the links between the prizes and chronicles the author's contacts with leading scientists over a span of almost six decades. I have used the official website of the Nobel Prizes1 as my primary source of information and Wikipedia2 as the secondary source. In a few cases, I have obtained information from reliable sources such as the Biographical Memoirs of the Fellows of the Royal Society.3 I cannot provide references for my personal reminiscences.

Some momentous discoveries and innovations can be connected to a particular moment in the history of humankind, whereas the emergence of other fields of human endeavor cannot be placed in time, nor associated with one individual or society. Computational chemistry is a prime example of the latter. It did not begin with one eureka moment, nor with a group of researchers, but rather evolved over several decades due to a myriad of factors, the two principal ones being scientific advances and technological innovations.

Experimental chemistry is primarily associated with the synthesis of molecules and materials or with reproducible measurements of observable properties, including the identification and quantification of chemical species. The fundamental basis of experimental chemistry was established in the 18th century by Antoine-Laurent de Lavoisier who was the first known person to record careful quantitative observations. The subsequent application of the scientific method over the next 250 years led to a remarkable list of achievements and established chemistry as a mature discipline. Given its relationship with the other natural sciences, chemistry is justifiably referred to as the central science.

Many chemical reactions have been known since antiquity; combustion and fermentation are classic examples. The earliest attempts to explain chemical phenomena lacked scientific rigor. A well-known example attributed to ancient Greek philosophers was the supposition that all substances are composed of four basic elements (fire, water, air, and earth). Attempts by philosophers in many societies to explain natural phenomena in terms of Empedocles' four-element theory eventually gave way to the atomic theory, introduced by John Dalton in 1808 and firmly established by the experiments of Ernest Rutherford in 1911.

The primary objective of theoretical and computational chemistry is to explain chemical phenomena involving atoms, molecules, and materials and to make predictions about the properties and transformations of matter. Theoretical and computational chemistry are inextricably linked, with the former providing a rigorous theoretical framework, while the latter uses computers to apply the methods of theoretical chemistry to a broad range of topics in chemistry. A historical account of the development of computational chemistry must by necessity include a summary of the major milestones in the history of theoretical chemistry. As noted previously, computational chemistry was a natural outgrowth of theoretical chemistry because of the rapid development of computers. Initially, the capabilities of computational chemistry were very modest, but by the end of the 20th century computational chemistry was established as one of the principal areas of chemistry. The evolution of computational chemistry resulted from a combination of advances in theoretical methods, the development of powerful algorithms and software, and innovations in computer technology.

A history of the development of computational chemistry could be written from many perspectives. For example, it could trace the history of electronic structure calculations on atoms, molecules, and materials from about 1925 with the advent of quantum mechanics to the present. Such an account would require a detailed description of many different approaches and would be a monumental task that could easily amount to several volumes. Unfortunately, such a historical record would be incomplete because it would not include thermodynamics and statistical mechanics. To cite one example, enzymatic reactions cannot be explained by electronic structure calculations alone. The approach taken in this article is to chronicle the history of computational chemistry from the perspective of the Nobel Prizes that celebrate advances in theoretical and computational chemistry or achievements that contain a significant theoretical component. Based on these criteria, the author has identified fourteen Nobel Prizes in Chemistry that are relevant to the development of computational chemistry (see Table 1). Section 16 discusses the Nobel Prizes in Physics which have a connection with computational and theoretical chemistry.

TABLE 1. Nobel prizes in chemistry for advances in theoretical and computational chemistry or achievements that contain a significant theoretical component.
1901 Jacobus Henricus van't Hoff “in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions”
1903 Svante August Arrhenius “in recognition of the extraordinary services he has rendered to the advancement of chemistry by his electrolytic theory of dissociation”
1936 Peter Debye “for his contributions to our knowledge of molecular structure through his investigations on dipole moments and on the diffraction of X-rays and electrons in gases”
1954 Linus Pauling “for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances”
1966 Robert S. Mulliken “for his fundamental work concerning chemical bonds and the electronic structure of molecules by the molecular orbital method”
1968 Lars Onsager “for the discovery of the reciprocal relations bearing his name, which are fundamental for the thermodynamics of irreversible processes”
1971 Gerhard Herzberg “for his contributions to the knowledge of electronic structure and geometry of molecules, particularly free radicals”
1974 Paul J. Flory “for his fundamental achievements, both theoretical and experimental, in the physical chemistry of the macromolecules”
1976 William N. Lipscomb “for his studies on the structures of boranes illuminating problems of chemical bonding”
1977 Ilya Prigogine “for his contributions to non-equilibrium thermodynamics, particularly the theory of dissipative structures”
1981 Kenichi Fukui and Roald Hoffmann “for their theories, developed independently, concerning the course of chemical reactions”
1992 Rudolph A. Marcus “for his contributions to the theory of electron transfer reactions in chemical systems”
1998 Walter Kohn and John A. Pople Kohn “for his development of the density-functional theory” and Pople “for his development of computational methods in quantum chemistry”
2013

Martin Karplus, Michael Levitt and Arieh Warshel

“for the development of multiscale models for complex chemical systems”


中文翻译:

计算化学的诺贝尔历史。个人观点

1 简介

本文提出了对部分诺贝尔化学奖的个人看法。它既不是对获奖科学的全面描述,也没有提供杰出科学家群体的完整传记。它试图展示奖项之间的联系,并记录作者在近六十年的时间里与顶尖科学家的接触。我使用诺贝尔奖官方网站1作为我的主要信息来源,使用维基百科2作为次要来源。在某些情况下,我从可靠的来源获得了信息,例如《英国皇家学会会员传记回忆录》。3我无法提供我个人回忆的参考资料。

一些重大的发现和创新可以与人类历史上的某个特定时刻联系起来,而人类努力的其他领域的出现不能及时确定,也不能与某个个人或社会联系起来。计算化学是后者的一个典型例子。它并不是从一个灵光一现的时刻开始的,也不是由一群研究人员开始的,而是由于多种因素而在数十年的时间里不断演变,其中两个主要因素是科学进步和技术创新。

实验化学主要与分子和材料的合成或可观察特性的可重复测量相关,包括化学物质的识别和定量。实验化学的基础是由安托万·洛朗·德·拉瓦锡 (Antoine-Laurent de Lavoisier) 在 18 世纪建立的,他是已知的第一个记录仔细定量观察的人。在接下来的 250 年里,科学方法的应用取得了一系列令人瞩目的成就,并将化学确立为一门成熟的学科。鉴于化学与其他自然科学的关系,化学被称为中心科学是有道理的。

许多化学反应自古以来就为人所知。燃烧和发酵是典型的例子。解释化学现象的最早尝试缺乏科学严谨性。古希腊哲学家的一个著名例子是所有物质都由四种基本元素(火、水、空气和土)组成的假设。许多社会的哲学家尝试用恩培多克勒的四元素理论来解释自然现象,最终让位于约翰·道尔顿 (John Dalton) 于 1808 年提出并由欧内斯特·卢瑟福 (Ernest Rutherford) 于 1911 年的实验牢固确立的原子理论。

理论和计算化学的主要目标是解释涉及原子、分子和材料的化学现象,并对物质的性质和转变做出预测。理论化学和计算化学有着千丝万缕的联系,前者提供了严格的理论框架,而后者则利用计算机将理论化学方法应用于广泛的化学主题。计算化学发展的历史记述必须包括理论化学史上主要里程碑的总结。如前所述,由于计算机的快速发展,计算化学是理论化学的自然产物。最初,计算化学的能力非常有限,但到 20 世纪末,计算化学已成为化学的主要领域之一。计算化学的发展是理论方法的进步、强大的算法和软件的开发以及计算机技术的创新相结合的结果。

一部计算化学的发展史可以从多个角度来书写。例如,它可以追溯从大约 1925 年量子力学出现到现在的原子、分子和材料的电子结构计算的历史。这样的描述需要对许多不同的方法进行详细描述,并且将是一项艰巨的任务,很容易达到几卷的量。不幸的是,这样的历史记录是不完整的,因为它不包括热力学和统计力学。举一个例子,酶促反应不能仅通过电子结构计算来解释。本文采用的方法是从诺贝尔奖的角度记录计算化学的历史,诺贝尔奖庆祝理论和计算化学的进步或包含重要理论成分的成就。根据这些标准,作者确定了 14 个与计算化学发展相关的诺贝尔化学奖(见表 1)。第 16 节讨论与计算和理论化学有关的诺贝尔物理学奖。

表 1.因理论和计算化学方面的进步或包含重要理论成分的成就而获得的诺贝尔化学奖。
1901年 雅各布斯·亨利克斯·范特霍夫 “表彰他在发现溶液中的化学动力学和渗透压定律方面所做出的杰出贡献”
1903年 斯万特·奥古斯特·阿累尼乌斯 “表彰他通过电解离解理论为化学进步做出的杰出贡献”
1936年 彼得·德拜 “通过对偶极矩以及气体中 X 射线和电子衍射的研究,对我们对分子结构知识的贡献”
1954年 莱纳斯·鲍林 “表彰他对化学键本质及其在阐明复杂物质结构中的应用的研究”
1966年 罗伯特·马利肯 “表彰他通过分子轨道方法在化学键和分子电子结构方面所做的基础工作”
1968年 拉斯·昂萨格 “发现了以他的名字命名的相互关系,这是不可逆过程热力学的基础”
1971年 格哈德·赫兹伯格 “他对分子的电子结构和几何学知识,特别是自由基的贡献”
1974年 保罗·J·弗洛里 “表彰他在大分子物理化学方面的理论和实验方面的基础成就”
1976年 威廉·利普斯科姆 “他对硼烷结构的研究揭示了化学键合问题”
1977年 伊利亚·普里高津 “表彰他对非平衡热力学,特别是耗散结构理论的贡献”
1981年 福井健一和罗尔德·霍夫曼 “他们独立发展的关于化学反应过程的理论”
1992年 鲁道夫·马库斯 “他对化学系统中电子转移反应理论的贡献”
1998年 沃尔特·科恩和约翰·波普尔 Kohn“表彰他对密度泛函理论的发展”和Pople“表彰他对量子化学计算方法的发展”
2013年

马丁·卡普拉斯、迈克尔·莱维特和阿里耶·沃谢尔

“用于开发复杂化学系统的多尺度模型”
更新日期:2024-05-03
down
wechat
bug