当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
N-Acetyl Cysteine-Decorated Nitric Oxide-Releasing Interface for Biomedical Applications
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2024-05-02 , DOI: 10.1021/acsami.4c02369
Rashmi Pandey 1 , Vicente Pinon 2 , Mark Garren 1 , Patrick Maffe 1 , Arnab Mondal 1 , Elizabeth J. Brisbois 1 , Hitesh Handa 1, 2
Affiliation  

Biomedical devices are vulnerable to infections and biofilm formation, leading to extended hospital stays, high expenditure, and increased mortality. Infections are clinically treated via the administration of systemic antibiotics, leading to the development of antibiotic resistance. A multimechanistic strategy is needed to design an effective biomaterial with broad-spectrum antibacterial potential. Recent approaches have investigated the fabrication of innately antimicrobial biomedical device surfaces in the hope of making the antibiotic treatment obsolete. Herein, we report a novel fabrication strategy combining antibacterial nitric oxide (NO) with an antibiofilm agent N-acetyl cysteine (NAC) on a polyvinyl chloride surface using polycationic polyethylenimine (PEI) as a linker. The designed biomaterial could release NO for at least 7 days with minimal NO donor leaching under physiological conditions. The proposed surface technology significantly reduced the viability of Gram-negative Escherichia coli (>97%) and Gram-positive Staphylococcus aureus (>99%) bacteria in both adhered and planktonic forms in a 24 h antibacterial assay. The composites also exhibited a significant reduction in biomass and extra polymeric substance accumulation in a dynamic environment over 72 h. Overall, these results indicate that the proposed combination of the NO donor with mucolytic NAC on a polymer surface efficiently resists microbial adhesion and can be used to prevent device-associated biofilm formation.

中文翻译:

用于生物医学应用的 N-乙酰半胱氨酸修饰的一氧化氮释放界面

生物医学设备容易受到感染和生物膜形成,导致住院时间延长、费用高和死亡率增加。临床上通过全身性抗生素治疗感染,导致抗生素耐药性的产生。需要采用多机制策略来设计具有广谱抗菌潜力的有效生物材料。最近的方法已经研究了天然抗菌生物医学设备表面的制造,希望淘汰抗生素治疗。在此,我们报告了一种新颖的制造策略,使用聚阳离子聚乙烯亚胺(PEI)作为连接剂,将抗菌一氧化氮(NO)与抗生物膜剂N-乙酰半胱氨酸(NAC)结合在聚氯乙烯表面上。设计的生物材料可以在生理条件下释放 NO 至少 7 天,并且 NO 供体浸出最少。在 24 小时抗菌测定中,所提出的表面技术显着降低了粘附和浮游形式的革兰氏阴性大肠杆菌(>97%) 和革兰氏阳性金黄色葡萄球菌(>99%)的活力。在超过 72 小时的动态环境中,复合材料还表现出生物量和额外聚合物积累的显着减少。总体而言,这些结果表明,所提议的NO供体与聚合物表面上的粘液溶解NAC的组合可有效抵抗微生物粘附,并可用于防止与装置相关的生物膜形成。
更新日期:2024-05-02
down
wechat
bug