当前位置: X-MOL 学术J. Pineal. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Circadian desynchrony and glucose metabolism
Journal of Pineal Research ( IF 10.3 ) Pub Date : 2024-05-02 , DOI: 10.1111/jpi.12956
Esther M. Speksnijder 1, 2 , Peter H. Bisschop 1, 2 , Sarah E. Siegelaar 1, 2 , Dirk Jan Stenvers 1, 2, 3 , Andries Kalsbeek 1, 2, 4, 5
Affiliation  

The circadian timing system controls glucose metabolism in a time‐of‐day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24‐h are generated by the transcriptional‐translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.

中文翻译:

昼夜节律不同步和葡萄糖代谢

昼夜节律系统以一天中时间依赖性的方式控制葡萄糖代谢。在哺乳动物中,昼夜节律计时系统由下丘脑前部双侧视交叉上核(SCN)中的主要中央时钟和周围组织中的从属时钟组成。这些不同时钟产生的周期约为 24 小时的振荡是由一组核心时钟基因的转录翻译反馈环路产生的。血糖稳态是这种昼夜节律系统控制的日常节律之一。 SCN 中的中央起搏器通过其神经投射到控制摄食行为和能量代谢的下丘脑中枢来控制葡萄糖稳态。 SCN 使用肾上腺糖皮质激素和褪黑激素等激素以及自主神经系统来调节葡萄糖生成和胰岛素敏感性等关键过程。肝脏、肌肉和脂肪组织等组织中的外周时钟用于增强和维持这些 SCN 信号。在最佳情况下,所有这些时钟都是同步的,并与行为和环境光/暗周期保持一致。当内部计时系统受到干扰(也称为昼夜节律不同步或昼夜节律失调)时,对葡萄糖代谢的负面影响就会变得明显。昼夜节律不同步可能发生在几个层面上,因为光照或睡眠的时间不当尤其会影响中枢时钟,而食物摄入或体力活动的时间不当尤其会影响外周时钟。在这篇综述中,我们将总结研究昼夜节律不同步对葡萄糖代谢的影响以及它如何导致胰岛素抵抗的文献。此外,我们将讨论旨在恢复昼夜节律同步以提高胰岛素敏感性并有助于预防 2 型糖尿病的潜在策略。
更新日期:2024-05-02
down
wechat
bug