当前位置: X-MOL 学术Land Degrad. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nano‐water treatment residuals: Enhancing phosphorus kinetics and optimization in saline soils
Land Degradation & Development ( IF 4.7 ) Pub Date : 2024-04-26 , DOI: 10.1002/ldr.5132
Mahmoud EL‐Sharkawy 1, 2 , Mahmoud Sleem 2 , Daolin Du 1 , Ahmed El Baroudy 2 , Jian Li 1 , Esawy Mahmoud 2 , Nehal Ali 3
Affiliation  

Phosphorus (P) use in agriculture has witnessed a global increase, leading to significant environmental problems. Nevertheless, the understanding of P kinetics in saline soils amended with nano‐water treatment residuals (nWTR) remains limited. This study aimed to (1) Investigate the impact of different nWTR addition rates (0%, 0.10%, 0.20%, and 0.50%) on the adsorption‐desorption kinetics of P applied to five soils with different salinity levels (1.47–58.50 dS m−1) using batch adsorption experiments. (2) Using different optimization models via Fit Quadratic Model and principal component analysis to predict the optimal utilization of nWTR. The X‐ray diffraction and Fourier transform infrared patterns proposed that the main mechanisms controlling the process are ligand exchange and precipitation. The results revealed that the adsorption level of P in amended soils was rapid, then decreased gradually until reaching equilibrium after 24 h/25°C. The kinetics data were well described by a pseudo‐second‐order model, suggesting a chemisorption‐dependent adsorption process. Increasing soil salinity and nWTR addition led to decline the phosphorus desorption. The application of 0.5% nWTR decreased P‐desorption from 33.95% to 16.22% in the non‐saline soil and from 18.43% to 10.63% in the highly saline soil. principal component analysis distinguished a positive association between P‐adsorbed and nWTR. The optimization models predicted that applying 0.5% nWTR for 965 min maximizes the P‐adsorption rate, reaching 1041 mg Kg−1 in highly saline‐soils. Therefore, nWTR can serve as a cost‐effective and efficient absorbent for mitigating P mobility and reducing its transport in saline soils.

中文翻译:

纳米水处理残留物:增强盐渍土中的磷动力学和优化

全球农业中磷 (P) 的使用量不断增加,导致了严重的环境问题。然而,对用纳米水处理残留物(nWTR)修正的盐渍土壤中磷动力学的理解仍然有限。本研究的目的是 (1) 研究不同 nWTR 添加率(0%、0.10%、0.20% 和 0.50%)对五种不同盐度土壤(1.47-58.50 dS)磷吸附-解吸动力学的影响米−1)采用批量吸附实验。 (2)通过拟合二次模型和主成分分析使用不同的优化模型来预测nWTR的最佳利用率。 X射线衍射和傅里叶变换红外图谱表明控制该过程的主要机制是配体交换和沉淀。结果表明,改良土壤对磷的吸附水平较快,然后逐渐下降,直至24 h/25℃后达到平衡。动力学数据通过伪二阶模型得到了很好的描述,表明吸附过程依赖于化学吸附。土壤盐度的增加和 nWTR 的添加导致磷解吸下降。 0.5% nWTR 的施用使非盐渍土中的磷解吸率从 33.95% 降低到 16.22%,高盐渍土中的磷解吸率从 18.43% 降低到 10.63%。主成分分析区分了 P 吸附和 nWTR 之间的正相关关系。优化模型预测,应用 0.5% nWTR 965 分钟可使 P 吸附率最大化,达到 1041 mg Kg−1在高盐度土壤中。因此,nWTR 可以作为一种经济有效的吸收剂,用于减轻磷的流动性并减少其在盐渍土中的运输。
更新日期:2024-04-26
down
wechat
bug