当前位置: X-MOL 学术Dyes Pigments › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Guest-induced supramolecular helices and its application in L-Arg detection and L-Arg controlled reversible morphology modulation
Dyes and Pigments ( IF 4.5 ) Pub Date : 2024-04-18 , DOI: 10.1016/j.dyepig.2024.112155
Jian-Peng Hu , Shao-Ping Tao , Qi Lin , Hong Yao , You-Ming Zhang , Tai-Bao Wei

A novel AIE supramolecular polymer () was synthesized by bis(2-hydroxy-1-naphthaldehyde) terephthalo hydrazone functionalized pillar [5]arene and cross-linked using a bis(4.4-dipyridinium salt)cross-linker via host-guest complexation. exhibited strong aggregation-induced emission (AIE) in binary solutions of DMSO/HO. could be an AIE-based sensor with specific fluorescence sensing ability for L-Arg in water. The detection limit of for L-Arg was 3.95 × 10 M, and other amino acids did not interfere with the sensing process. Moreover, in a pure DMSO solvent, can self-assemble into a fibrous structure of the right-hand spiral by guest-induced supramolecular helices. At 80 % water content, undergoes a morphological transformation into supramolecular polymer. Intriguingly, exhibits a reversible transformation from a polymer to a nanosphere through the alternating addition of trifluoroacetic acid and arginine. Additionally, the fluorescence of demonstrates an "on-off" switch. This phenomenon is attributed to the formation and disruption of intermolecular hydrogen bonds. The reversible manipulation of polymer materials' morphology and optical properties holds significant potential in biomedicine and smart materials.

中文翻译:


客体诱导的超分子螺旋及其在L-Arg检测和L-Arg控制的可逆形态调制中的应用



由双(2-羟基-1-萘醛)对苯二甲腙官能化柱[5]芳烃合成了一种新型AIE超分子聚合物(),并使用双(4.4-二吡啶鎓盐)交联剂通过主客体络合进行交联。在 DMSO/H2O 二元溶液中表现出强烈的聚集诱导发射(AIE)。可能是一种基于 AIE 的传感器,对水中的 L-Arg 具有特定的荧光传感能力。 L-Arg的检测限为3.95×10M,其他氨基酸不干扰传感过程。此外,在纯DMSO溶剂中,可以通过客体诱导的超分子螺旋自组装成右手螺旋的纤维结构。含水量为 80% 时,形态转变为超分子聚合物。有趣的是,通过交替添加三氟乙酸和精氨酸,表现出从聚合物到纳米球的可逆转变。此外,荧光显示了“开关”。这种现象归因于分子间氢键的形成和破坏。聚合物材料的形态和光学性质的可逆操纵在生物医学和智能材料中具有巨大的潜力。
更新日期:2024-04-18
down
wechat
bug