当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metal-free Platforms for Molecular Thin Films as High-performance Supercapacitors
Chemical Science ( IF 8.4 ) Pub Date : 2024-04-25 , DOI: 10.1039/d4sc00611a
Ritu Gupta , Ankur Malik , Kusum Kumari , Saurabh Kumar Singh , Vincent Vivier , Prakash Chandra Mondal

Controlling chemical functionalization and achieving stable electrode-molecule interfaces for high-performance electrochemical energy storage applications remains a challenging task. Herein, we present a simple, controllable, scalable, and versatile electrochemical modification approach of graphite rods (GR) extracted from low-cost Eveready cells that were covalently modified with anthracene oligomers. The anthracene oligomers with a total layer thickness of ~ 24 nm on the GR electrode yield a remarkable specific capacitance of ~ 670 F g-1 with good galvanostatic charge-discharge cycling stability (10,000) recorded in 1 M H2SO4 electrolyte. Such a boost in capacitance is mainly attributed to two contributions: (i) an electrical double-layer at the anthracene oligomer/GR/electrolyte interfaces, and (ii) the proton-coupled electron transfer (PCET) reaction, which ensures a substantial Faradaic contribution to the total capacitance. Due to the higher conductivity of the anthracene films, it possesses more azo groups (-N=N-) during the electrochemical growth of the oligomer films compared to pyrene and naphthalene oligomers, which is key to PCET reactions. AC-based electrical studies unravel the in-depth charge interfacial electrical behavior of anthracene-grafted electrodes. Asymmetrical solid-state supercapacitor devices were made using anthracene-modified biomass-derived porous carbon, which showed improved performance with a specific capacitance of ~ 155 F g-1 at 2 A g-1 with an energy density of 5.8 Wh kg-1 at a high-power density of 2,010 W kg-1 and displayed LED lighting for a longer period. The present work provides a promising metal-free approach in developing organic thin-film hybrid capacitors.

中文翻译:

用于作为高性能超级电容器的分子薄膜的无金属平台

控制化学功能化并实现高性能电化学储能应用的稳定电极-分子界面仍然是一项具有挑战性的任务。在此,我们提出了一种简单、可控、可扩展且通用的电化学修饰方法,对从低成本 Eveready 电池中提取的石墨棒(GR)进行共价修饰,并用蒽低聚物进行共价修饰。 GR 电极上总层厚度约为 24 nm 的蒽低聚物产生了约 670 F g-1 的显着比电容,并在 1 M H2SO4 电解质中记录了良好的恒电流充放电循环稳定性 (10,000)。这种电容的增加主要归因于两个贡献:(i)蒽低聚物/GR/电解质界面处的双电层,以及(ii)质子耦合电子转移(PCET)反应,这确保了大量的法拉第对总电容的贡献。由于蒽薄膜具有较高的电导率,因此与芘和萘低聚物相比,在低聚物薄膜的电化学生长过程中,蒽薄膜具有更多的偶氮基团(-N=N-),这是PCET反应的关键。基于交流的电学研究揭示了蒽接枝电极的深度电荷界面电学行为。使用蒽改性的生物质衍生的多孔碳制成不对称固态超级电容器装置,其性能得到改善,在 2 A g-1 下的比电容约为 155 F g-1,在 2 A g-1 下的能量密度为 5.8 Wh kg-1功率密度高达 2,010 W kg-1,LED 照明时间更长。目前的工作为开发有机薄膜混合电容器提供了一种有前景的无金属方法。
更新日期:2024-04-25
down
wechat
bug