当前位置: X-MOL 学术Commun. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Longitudinal microstructural changes in 18 amygdala nuclei resonate with cortical circuits and phenomics
Communications Biology ( IF 5.9 ) Pub Date : 2024-04-18 , DOI: 10.1038/s42003-024-06187-5
Karam Ghanem , Karin Saltoun , Aparna Suvrathan , Bogdan Draganski , Danilo Bzdok

The amygdala nuclei modulate distributed neural circuits that most likely evolved to respond to environmental threats and opportunities. So far, the specific role of unique amygdala nuclei in the context processing of salient environmental cues lacks adequate characterization across neural systems and over time. Here, we present amygdala nuclei morphometry and behavioral findings from longitudinal population data (>1400 subjects, age range 40-69 years, sampled 2-3 years apart): the UK Biobank offers exceptionally rich phenotyping along with brain morphology scans. This allows us to quantify how 18 microanatomical amygdala subregions undergo plastic changes in tandem with coupled neural systems and delineating their associated phenome-wide profiles. In the context of population change, the basal, lateral, accessory basal, and paralaminar nuclei change in lockstep with the prefrontal cortex, a region that subserves planning and decision-making. The central, medial and cortical nuclei are structurally coupled with the insular and anterior-cingulate nodes of the salience network, in addition to the MT/V5, basal ganglia, and putamen, areas proposed to represent internal bodily states and mediate attention to environmental cues. The central nucleus and anterior amygdaloid area are longitudinally tied with the inferior parietal lobule, known for a role in bodily awareness and social attention. These population-level amygdala-brain plasticity regimes in turn are linked with unique collections of phenotypes, ranging from social status and employment to sleep habits and risk taking. The obtained structural plasticity findings motivate hypotheses about the specific functions of distinct amygdala nuclei in humans.



中文翻译:

18 个杏仁核的纵向微观结构变化与皮质回路和表组学产生共鸣

杏仁核调节分布式神经回路,这些神经回路很可能是为了应对环境威胁和机遇而进化的。到目前为止,独特的杏仁核在显着环境线索的上下文处理中的具体作用缺乏跨神经系统和随着时间的推移的充分表征。在这里,我们展示了来自纵向群体数据(>1400 名受试者,年龄范围 40-69 岁,间隔 2-3 年采样)的杏仁核形态测量和行为发现:英国生物银行提供了异常丰富的表型分析以及大脑形态扫描。这使我们能够量化 18 个微观解剖杏仁核亚区域如何与耦合神经系统一起经历可塑性变化,并描绘出它们相关的表型范围轮廓。在人口变化的背景下,基底核、侧核、辅助基底核和副层核与前额皮质(一个促进规划和决策的区域)同步变化。中央、内侧和皮质核在结构上与显着网络的岛叶和前扣带回节点耦合,此外还有 MT/V5、基底神经节和壳核,这些区域被认为代表内部身体状态并介导对环境线索的关注。中央核和杏仁核前区与顶下小叶纵向相连,顶下小叶在身体意识和社会注意力方面发挥着重要作用。这些人口水平的杏仁核大脑可塑性机制反过来又与独特的表型集合相关,从社会地位和就业到睡眠习惯和冒险行为。所获得的结构可塑性发现激发了关于人类不同杏仁核特定功能的假设。

更新日期:2024-04-19
down
wechat
bug