当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A nanocage reactor with dense shareable hot spots for in-situ and dynamic SERS tracking photocatalytic reaction bonds variations
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2024-04-16 , DOI: 10.1016/j.cej.2024.151358
Kecen Chen , Zhipeng Zhang , Ruili Li , Meng Wang , Shenghong Liu , Ziyi Gao , Qi Liu , Xiaoqing Chen

The construction of bifunctional nanomaterials containing high-density controllable plasma nanogaps (hot spots) integrated with photocatalysis has made it possible to monitor photocatalyzed reactions in-situ using Surface-Enhanced Raman Scattering (SERS). Additionally, in-situ SERS monitoring of the reaction process is high beneficial for understanding the underlying mechanisms of photocatalysis. In this study, we present the fabrication of a novel spherical nanocage reactor (de-Au@mTiO2) with an exterior composed of mesoporous titanium dioxide (TiO2). The nanoreactor contains a multitude of different sized gold nanoparticles (Au NPs) embedded as internal scaffolds, and the numerous nano-gaps form substantial shareable hot spots, thereby enhancing the SERS performance. Moreover, under light stimulation, the synergistic effect between the TiO2 semiconductor and the plasma nanoparticles can significantly expand the light absorption range and achieve a full-band spectral response. We then successfully employed the full-band bifunctional substrate to monitor the classical photocatalytic reaction of benzylamine oxidative coupling through in-situ SERS. The SERS dynamic change spectrum provided direct evidence for understanding the plasma-driven electron transfer mechanism, and density functional calculations then revealed the key steps and possible intermediate states in this catalytic reaction. Based on this experimental verification, we proceeded to employ this material for the photocatalytic cleavage of NADH, an important reduction oxidase involved in tumor cell metabolism. Remarkably, SERS was also utilized to uncover the molecular-level mechanism of NADH cleavage, offering a novel approach to impede the activity of tumor cells.



中文翻译:

具有密集可共享热点的纳米笼反应器,用于原位和动态 SERS 跟踪光催化反应键变化

包含与光催化集成的高密度可控等离子体纳米间隙(热点)的双功能纳米材料的构造使得使用表面增强拉曼散射(SERS)原位监测光催化反应成为可能。此外,反应过程的原位SERS 监测对于理解光催化的潜在机制非常有益。在这项研究中,我们提出了一种新型球形纳米笼反应器(de-Au@mTiO 2 )的制造,其外部由介孔二氧化钛(TiO 2)组成。该纳米反应器包含大量不同尺寸的金纳米颗粒(Au NP)作为内部支架嵌入,并且大量的纳米间隙形成大量可共​​享的热点,从而增强了SERS性能。而且,在光刺激下,TiO 2半导体与等离子体纳米颗粒之间的协同效应可以显着扩大光吸收范围并实现全波段光谱响应。然后,我们成功地利用全波段双功能基质通过原位SERS 监测苯甲胺氧化偶联的经典光催化反应。 SERS动态变化谱为理解等离子体驱动的电子转移机制提供了直接证据,密度泛函计算则揭示了该催化反应的关键步骤和可能的中间态。基于这一实验验证,我们继续利用这种材料来光催化裂解NADH,NADH是一种参与肿瘤细胞代谢的重要还原氧化酶。值得注意的是,SERS 还被用来揭示 NADH 裂解的分子水平机制,为阻碍肿瘤细胞的活性提供了一种新方法。

更新日期:2024-04-21
down
wechat
bug