当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An electrodeposited superaerophobic nickel catalyst on pencil-drawn paper: a novel approach for highly efficient and stable hydrogen evolution
Inorganic Chemistry Frontiers ( IF 7 ) Pub Date : 2024-04-16 , DOI: 10.1039/d4qi00101j
Qian Sun 1 , Xiaoyu Hao 1 , Tianyi Zhang 1 , Zelin Ma 1 , Kui Hu 2 , Ming Yang 3, 4 , Xiaolei Huang 5 , Xuqin Liu 1, 6
Affiliation  

Electrocatalytic water splitting stands at the forefront for advancing renewable energy technologies. A critical challenge in this realm is the detrimental effect of gas bubble adhesion on electrode surfaces, which impairs electrochemical efficiency. Addressing this, our study introduces a superaerophobic nickel-based catalyst, innovatively fabricated through electrodeposition on pencil-drawn, non-conductive A4 paper. The catalyst's distinctive feature arises from phosphorus (P) doping, which instigates lattice contraction in the nickel metal, culminating in a cracked surface topology. This morphological alteration is demonstrated to engender superaerophobic properties, a conclusion substantiated by comprehensive first-principles calculations and meticulous surface tension measurements. The electrocatalyst showcases enhanced performance in water splitting, primarily attributed to the minimal gas bubble adhesion on its superaerophobic surface. This performance notably surpasses that of commercial Pt plates, especially at elevated current densities. Additionally, P-doping plays a pivotal role in bolstering the electrode's corrosion resistance against the electrolyte, thereby augmenting its structural stability and longevity. Our findings pave the way for a novel and efficacious approach for developing high-performance electrocatalysts, offering significant promise for sustainable and efficient hydrogen production in renewable energy applications.

中文翻译:

铅笔画纸上电沉积超疏气镍催化剂:一种高效稳定析氢的新方法

电催化水分解处于推进可再生能源技术的前沿。该领域的一个关键挑战是电极表面上气泡粘附的有害影响,这会损害电化学效率。针对这一问题,我们的研究引入了一种超疏气镍基催化剂,该催化剂通过在铅笔绘制的非导电 A4 纸上电沉积而创新地制造。该催化剂的显着特征源自磷 (P) 掺杂,磷 (P) 掺杂会引发镍金属中的晶格收缩,最终形成裂纹的表面拓扑。这种形态的改变被证明会产生超疏气特性,这一结论得到了全面的第一性原理计算和细致的表面张力测量的证实。该电催化剂在水分解方面表现出增强的性能,这主要归因于其超疏气表面上的气泡粘附力极小。这种性能明显超过了商业铂板,特别是在较高的电流密度下。此外,磷掺杂在增强电极对电解质的耐腐蚀性方面发挥着关键作用,从而提高了其结构稳定性和寿命。我们的研究结果为开发高性能电催化剂的新颖有效的方法铺平了道路,为可再生能源应用中可持续和高效的氢气生产提供了重大前景。
更新日期:2024-04-16
down
wechat
bug