当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Impact of Local Strain Fields in Noncollinear Antiferromagnetic Films
Advanced Materials ( IF 29.4 ) Pub Date : 2024-04-15 , DOI: 10.1002/adma.202401180
Freya Johnson 1 , Frederic Rendell‐Bhatti 2 , Bryan D. Esser 3 , Aisling Hussey 4 , David W. McComb 5 , Jan Zemen 6 , David Boldrin 2 , Lesley Cohen 7
Affiliation  

Antiferromagnets hosting structural or magnetic order that breaks time reversal symmetry are of increasing interest for “beyond von Neumann” computing applications because the topology of their band structure allows for intrinsic physical properties, exploitable in integrated memory and logic function. One such group are the noncollinear antiferromagnets. Essential for domain manipulation is the existence of small net moments found routinely when the material is synthesized in thin film form and attributed to symmetry breaking caused by spin canting, either from the Dzyaloshinskii–Moriya interaction or from strain. Although the spin arrangement of these materials makes them highly sensitive to strain, there is little understanding about the influence of local strain fields caused by lattice defects on global properties, such as magnetization and anomalous Hall effect. This premise is investigated by examining noncollinear antiferromagnetic films that are either highly lattice mismatched or closely matched to their substrate. In either case, edge dislocation networks are generated and for the former case, these extend throughout the entire film thickness, creating large local strain fields. These strain fields allow for finite intrinsic magnetization in seemingly structurally relaxed films and influence the antiferromagnetic domain state and the intrinsic anomalous Hall effect.

中文翻译:

非共线反铁磁薄膜中局部应变场的影响

具有打破时间反转对称性的结构或磁序的反铁磁体越来越受到“超越冯诺依曼”计算应用的关注,因为其能带结构的拓扑允许内在的物理特性,可在集成存储器和逻辑功能中利用。其中一组是非共线反铁磁体。域操纵的关键是当材料以薄膜形式合成时经常发现的小净矩的存在,并归因于自旋倾斜引起的对称性破缺,无论是来自 Dzyaloshinskii-Moriya 相互作用还是来自应变。尽管这些材料的自旋排列使其对应变高度敏感,但人们对晶格缺陷引起的局部应变场对整体特性(例如磁化强度和反常霍尔效应)的影响知之甚少。通过检查与其基底高度晶格失配或紧密匹配的非共线反铁磁薄膜来研究这一前提。在任何一种情况下,都会产生刃位错网络,对于前一种情况,这些刃位错网络延伸到整个薄膜厚度,产生大的局部应变场。这些应变场允许在看似结构松弛的薄膜中实现有限的本征磁化,并影响反铁磁畴状态和本征反常霍尔效应。
更新日期:2024-04-15
down
wechat
bug