当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Particle-Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives
Advanced Materials ( IF 29.4 ) Pub Date : 2024-04-15 , DOI: 10.1002/adma.202311692
Deyu Liu 1 , Yongbo Kuang 1, 2
Affiliation  

This comprehensive review delves into the intricacies of the photoelectrochemical (PEC) water splitting process, specifically focusing on the design, fabrication, and optimization of particle-based photoelectrodes for efficient green hydrogen production. These photoelectrodes, composed of semiconductor materials, potentially harness light energy and generate charge carriers, driving water oxidation and reduction reactions. The versatility of particle-based photoelectrodes as a platform for investigating and enhancing various semiconductor candidates is explored, particularly the emerging complex oxides with compelling charge transfer properties. However, the challenges presented by many factors influencing the performance and stability of these photoelectrodes, including particle size, shape, composition, morphology, surface modification, and electrode configuration, are highlighted. The review introduces the fundamental principles of semiconductor photoelectrodes for PEC water splitting, presents an exhaustive overview of different synthesis methods for semiconductor powders and their assembly into photoelectrodes, and discusses recent advances and challenges in photoelectrode material development. It concludes by offering promising strategies for improving photoelectrode performance and stability, such as the adoption of novel architectures and heterojunctions.

中文翻译:

用于 PEC 水分解的粒子光电极:概念和前景

这篇全面的综述深入研究了光电化学(PEC)水分解过程的复杂性,特别关注用于高效生产绿色氢气的颗粒光电极的设计、制造和优化。这些由半导体材料组成的光电极可以利用光能并产生电荷载流子,驱动水的氧化和还原反应。探索了基于颗粒的光电极作为研究和增强各种半导体候选物的平台的多功能性,特别是具有引人注目的电荷转移特性的新兴复合氧化物。然而,影响这些光电极性能和稳定性的许多因素所带来的挑战,包括粒径、形状、成分、形态、表面改性和电极配置,都凸显出来。该综述介绍了用于PEC水分解的半导体光电极的基本原理,详尽概述了半导体粉末的不同合成方法及其组装成光电极的方法,并讨论了光电极材料开发的最新进展和挑战。最后,它提供了提高光电极性能和稳定性的有前途的策略,例如采用新颖的架构和异质结。本文受版权保护。版权所有
更新日期:2024-04-15
down
wechat
bug