当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Smart Organogels with Antiswelling, Strong Adhesion, and Freeze-Tolerance for Multi-Environmental Wearable Bioelectronic Devices
Chemistry of Materials ( IF 8.6 ) Pub Date : 2024-04-15 , DOI: 10.1021/acs.chemmater.4c00064
Zilong Zhu 1 , Dongdong Lu 2 , Mingning Zhu 3 , Peng Zhang 4 , Xiaodong Xiang 1, 4
Affiliation  

Gel-based wearable bioelectronic devices have garnered increasing attention due to their unique properties. However, developing multiple environmentally tolerant (resistant to freezing, drying, and various solvents) conductive gels presents a formidable challenge. Herein, we designed and developed a smart organogel exhibiting high stretchability (up to 550% strain and 19.3 kPa modulus), adhesion (24.8 kPa on pigskin), and resistance to freezing, drying, and various solvents. This achievement is attributed to the synergistic effects arising from the interplay between hydrophobic and hydrophilic polymer segments, the multiple bond interactions within a composite network, and the robust adhesion provided by catechol functional groups in binary solvent dispersion. Furthermore, after introducing hydroxyl-functionalized carbon nanotubes (CNTs) into the network, the organogels demonstrate high conductivity with satisfactory sensitivity (GF = 3.68), wide strain range (0.5–450%), and prominent signal stability. Meanwhile, benefiting from the nonswelling and antifreezing attributes, the obtained conductive organogel proves its versatility as an all-weather sensor. It can achieve accurate and reliable strain sensing in a wide temperature range of −20 to 50 °C and exhibits a high-precision Morse code to transmit information underwater. Moreover, it could also serve as soft bionic electrodes to integrate into a wearable wireless device for detecting human physiological signals underwater. This study provides an effective and versatile design strategy for developing future advanced gel-based sensors and soft bioelectronic devices with robust tolerance to diverse environmental conditions.

中文翻译:

具有抗溶胀、强附着力和耐冻性的智能有机凝胶,适用于多环境可穿戴生物电子设备

基于凝胶的可穿戴生物电子设备由于其独特的性能而受到越来越多的关注。然而,开发多种环境耐受性(耐冷冻、干燥和各种溶剂)导电凝胶提出了艰巨的挑战。在此,我们设计并开发了一种智能有机凝胶,具有高拉伸性(高达 550% 应变和 19.3 kPa 模量)、粘附性(猪皮上 24.8 kPa)以及耐冷冻、干燥和各种溶剂的性能。这一成就归因于疏水性和亲水性聚合物链段之间的相互作用、复合网络内的多重键相互作用以及二元溶剂分散体中儿茶酚官能团提供的强大粘附力所产生的协同效应。此外,在网络中引入羟基功能化碳纳米管(CNT)后,有机凝胶表现出高电导率和令人满意的灵敏度(GF =3.68)、宽应变范围(0.5-450%)和突出的信号稳定性。同时,得益于不溶胀和防冻特性,所获得的导电有机凝胶证明了其作为全天候传感器的多功能性。它可以在-20至50°C的宽温度范围内实现准确可靠的应变传感,并表现出高精度莫尔斯电码在水下传输信息。此外,它还可以作为软仿生电极集成到可穿戴无线设备中,用于检测水下人体生理信号。这项研究为开发未来先进的凝胶传感器和软生物电子设备提供了一种有效且通用的设计策略,这些设备对不同的环境条件具有强大的耐受性。
更新日期:2024-04-15
down
wechat
bug