当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An improved mathematical model for the photon-enhanced thermionic emission (PETE) device with an emphasis on the photon-electron conservation relationship
Solar Energy Materials and Solar Cells ( IF 6.9 ) Pub Date : 2024-04-12 , DOI: 10.1016/j.solmat.2024.112827
Tao Li , Tao Ma , Wen Wang , Gang Xiao

Utilizing the quantum and thermal energy of solar photons simultaneously to realize broad solar spectrum utilization, photon-enhanced thermionic emission (PETE) exhibits high photoelectric conversion efficiency (PCE) potential, with maximum theoretical efficiencies of 47% under 3000 suns and exceeds the Shockley-Queisser limit for an ideal single-junction solar cell. Mathematical models have been proposed in the literature to investigate its operation laws and evaluate its power potential, while some did not consider the conservation relationship of photon-absorption and electron-emission comprehensively and their simulation results may deviate obviously from the actual situation. Herein, we develop both two zero-dimensional (0-D) and one-dimensional (1-D) models with the correction for the photon-electron conservation relationship based on the basic models of PETE. The results demonstrate that the modified models possess better predictions for the thermal current (emission electron flow from the cathode induced by heat). Moreover, the unreasonable negative values of quantum efficiency (QE) and photoelectron concentration can be eliminated at high temperatures. Based on the improved models, PETE shows a wider selection of cathode semiconductor materials since the cathode temperature is lower due to the larger thermal current. The maximum PCE of the 0-D model is 37% with 1.04 eV electron affinity and extremely high solar concentration ratios. For a practical silicon cathode PETE device, it is preferable to operate it under 50 suns in photon-enhanced thermionic regime and the maximum PCE is less than 4.5% due to silicon's poor photon absorption property.

中文翻译:

改进的光子增强热电子发射(PETE)器件数学模型,重点关注光子-电子守恒关系

同时利用太阳光子的量子能和热能实现广泛的太阳光谱利用,光子增强热电子发射(PETE)展现出高光电转换效率(PCE)潜力,在3000个太阳照射下理论效率最高可达47%,超过了肖克利-理想单结太阳能电池的奎塞尔极限。文献中提出了数学模型来研究其运行规律并评估其功率潜力,但有些文献没有综合考虑光子吸收和电子发射的守恒定律关系,其模拟结果可能与实际情况有明显偏差。在此,我们基于PETE的基本模型开发了两个零维(0-D)和一维(1-D)模型,并对光子-电子守恒关系进行了修正。结果表明,修改后的模型对热电流(由热引起的阴极发射电子流)具有更好的预测能力。此外,在高温下可以消除量子效率(QE)和光电子浓度的不合理负值。基于改进的模型,PETE展示了更广泛的阴极半导体材料选择,因为热电流更大,阴极温度更低。 0-D模型的最大PCE为37%,电子亲和力为1.04 eV,并且具有极高的太阳聚光比。对于实际的硅阴极PETE器件,最好在光子增强热离子状态下在50个太阳下运行,并且由于硅的光子吸收性能较差,最大PCE小于4.5%。
更新日期:2024-04-12
down
wechat
bug