当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing Conversion Kinetics through Electron Density Dual‐Regulation of Catalysts and Sulfur toward Room‐/Subzero‐Temperature Na–S Batteries
Advanced Science ( IF 15.1 ) Pub Date : 2024-04-10 , DOI: 10.1002/advs.202308180
Sainan Luo 1, 2 , Jiafeng Ruan 1 , Yan Wang 1 , Min Chen 1 , Limin Wu 1
Affiliation  

Room‐temperature sodium–sulfur (RT Na/S) batteries have received increasing attention for the next generation of large‐scale energy storage, yet they are hindered by the severe dissolution of polysulfides, sluggish redox kinetic, and incomplete conversion of sodium polysulfides (NaPSs). Herein, the study proposes a dual‐modulating strategy of the electronic structure of electrocatalyst and sulfur to accelerate the conversion of NaPSs. The selenium‐modulated ZnS nanocrystals with electron rearrangement in hierarchical structured spherical carbon (Se‐ZnS/HSC) facilitate Na+ transport and catalyze the conversion between short‐chain sulfur and Na2S. And the in situ introduced Se within S can enhance conductivity and form an S─Se bond, suppressing the “polysulfides shuttle”. Accordingly, the S@Se‐ZnS/HSC cathode exhibits a specific capacity of as high as 1302.5 mAh g−1 at 0.1 A g−1 and ultrahigh‐rate capability (676.9 mAh g−1 at 5.0 A g−1). Even at −10 °C, this cathode still delivers a high reversible capacity of 401.2 mAh g−1 at 0.05 A g−1 and 94% of the original capacitance after 50 cycles. This work provides a novel design idea for high‐performance Na/S batteries.

中文翻译:

通过催化剂和硫的电子密度双重调节增强室温/零下温度 Na-S 电池的转换动力学

室温钠硫(RT Na/S)电池在下一代大规模储能方面受到越来越多的关注,但其受到多硫化物严重溶解、氧化还原动力学缓慢和多硫化钠转化不完全的阻碍。 NaPS)。在此,该研究提出了电催化剂和硫的电子结构的双重调节策略来加速NaPSs的转化。分级结构球形碳(Se-ZnS/HSC)中具有电子重排的硒调制 ZnS 纳米晶体有利于 Na+运输并催化短链硫和Na之间的转化2S中原位引入的Se可以增强电导率并形成S─Se键,抑制“多硫化物穿梭”。因此,S@Se-ZnS/HSC正极表现出高达1302.5 mAh g的比容量−10.1 A g 时−1和超高倍率能力(676.9 mAh g−15.0 A g 时−1)。即使在-10°C下,该正极仍具有401.2 mAh g的高可逆容量−10.05 A g 时−150 次循环后电容为原始电容的 94%。这项工作为高性能Na/S电池提供了一种新颖的设计思路。
更新日期:2024-04-10
down
wechat
bug