当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Substantial Confinement of Crystal Growth of Organic Crystalline Materials in Metal–Organic Membrane Microshells
Langmuir ( IF 3.9 ) Pub Date : 2024-04-07 , DOI: 10.1021/acs.langmuir.4c00415
Dongyoung Jeon 1 , Bokgi Seo 1 , Jongryeol Yang 1 , Woo Sun Shim 2 , Nae-Gyu Kang 1 , Daehwan Park 3 , Jin Woong Kim 1
Affiliation  

This study proposes a robust microshell encapsulation system in which a metal–organic membrane (MOM), consisting of phytic acids (PAs) and metal ions, intrinsically prevents the molecular crystal growth of organic crystalline materials (OCMs). To develop this system, OCM-containing oil-in-water (O/W) Pickering emulsions were enveloped with the MOM, in which anionic pulp cellulose nanofiber (PCNF) primers electrostatically captured zinc ions at the O/W interface and chelated with PA, thus producing the MOM with a controlled shell thickness at the micron scale. We ascertained that the MOM formation fills and covers ∼75% of the surface pore size of PCNF films, which enhances the interfacial modulus by 2 orders of magnitude compared to that when treated with bare PCNFs. Through a feasibility test using a series of common OCMs, including ethylhexyl triazone, avobenzone, and ceramide, we demonstrated the excellent ability of our MOM microshell system to stably encapsulate OCMs while retaining their original molecular structures over time. These findings indicate that our MOM-reinforced microshell technology can be applied as a platform to substantially confine the crystal growth of various types of OCMs.

中文翻译:

金属有机膜微壳中有机晶体材料晶体生长的显着限制

这项研究提出了一种坚固的微壳封装系统,其中由植酸(PA)和金属离子组成的金属有机膜(MOM)本质上阻止了有机晶体材料(OCM)的分子晶体生长。为了开发该系统,含有 OCM 的水包油 (O/W) Pickering 乳液被 MOM 包封,其中阴离子纸浆纤维素纳米纤维 (PCNF) 底漆在 O/W 界面静电捕获锌离子并与 PA 螯合,从而生产出具有微米级受控壳厚度的 MOM。我们确定 MOM 形成填充并覆盖了 PCNF 薄膜表面孔径的约 75%,与用裸 PCNF 处理时相比,这将界面模量提高了 2 个数量级。通过使用一系列常见 OCM(包括乙基己基三嗪酮、阿伏苯宗和神经酰胺)的可行性测试,我们证明了 MOM 微壳系统具有稳定封装 OCM 的优异能力,同时随着时间的推移保留其原始分子结构。这些发现表明,我们的 MOM 增强微壳技术可以作为一个平台来充分限制各种类型 OCM 的晶体生长。
更新日期:2024-04-07
down
wechat
bug