当前位置: X-MOL 学术Sustain. Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering of the perovskite/electron-transporting layer interface with transition metal chalcogenides for improving the performance of inverted perovskite solar cells
Sustainable Energy & Fuels ( IF 5.6 ) Pub Date : 2024-04-03 , DOI: 10.1039/d4se00212a
Dimitris Tsikritzis 1, 2 , Konstantinos Chatzimanolis 1 , Nikolaos Tzoganakis 1 , Konstantinos Rogdakis 1, 2 , Marilena Isabella Zappia 3 , Beatriz Martín-García 4, 5, 6 , Ahmad Bagheri 3, 4 , Hossein Beydaghi 3 , Lukáš Děkanovský 7 , Zdeněk Sofer 7 , Sebastiano Bellani 3 , Francesco Bonaccorso 3, 4 , Emmanuel Kymakis 1, 2
Affiliation  

Layered two-dimensional (2D) transition-metal chalcogenides (TMCs) attract substantial interest across multiple disciplines due to their unique properties. In perovskite solar cells (PSCs), researchers have extensively explored the integration of 2D TMCs to enhance device power conversion efficiency (PCE) and stability. However, there is a research gap in understanding their impact on inverted (p–i–n) PSCs, especially at the perovskite/electron-transporting layer (ETL) interface. This study addresses this gap by investigating the effect of inserting InSe, MoSe2, and SnS2 nanosheets at the perovskite/ETL interface in inverted PSCs. The introduction of 2D TMC interlayers induces a downward shift in perovskite energy levels, optimizing the energy level alignment at the perovskite/ETL interface and substantially increasing the PCE. The SnS2-incorporating PSCs exhibit the highest relative improvement of 5.05% (InSe and MoSe2 nanosheets yield 3.37% and 2.5% PCE increase, respectively). This enhancement results in an absolute PCE of 18.5% with a fill factor exceeding 82%. Furthermore, the incorporation of InSe nanosheets eliminates the burn-in phase enhancing the long-term stability (T70 of 250 h) of unencapsulated devices. This study underscores the significant improvement in PSCs' PCE and stability by selectively incorporating suitable TMCs at the perovskite/ETL interface. This research offers insights into the potential role of TMCs in advancing PSCs.

中文翻译:

用过渡金属硫属化物设计钙钛矿/电子传输层界面以提高倒置钙钛矿太阳能电池的性能

层状二维 (2D) 过渡金属硫属化物 (TMC) 因其独特的性质而引起了多个学科的广泛关注。在钙钛矿太阳能电池(PSC)中,研究人员广泛探索了二维TMC的集成,以提高器件的功率转换效率(PCE)和稳定性。然而,在了解它们对倒置(p-i-n)PSC的影响方面存在研究空白,特别是在钙钛矿/电子传输层(ETL)界面。本研究通过研究在倒置 PSC 的钙钛矿/ETL 界面插入 InSe、MoSe 2和 SnS 2纳米片的影响来解决这一空白。 2D TMC 中间层的引入导致钙钛矿能级向下移动,优化了钙钛矿/ETL 界面的能级排列并大幅提高了 PCE。掺入SnS 2的PSC表现出最高的相对提高5.05%(InSe和MoSe 2纳米片的PCE分别提高3.37%和2.5%)。这一增强使绝对 PCE 达到 18.5%,填充因子超过 82%。此外,InSe 纳米片的加入消除了老化阶段,增强了未封装器件的长期稳定性( T 70为 250 小时)。这项研究强调了通过在钙钛矿/ETL界面选择性地掺入合适的TMC,PSC的PCE和稳定性得到显着改善。这项研究深入了解了 TMC 在推进 PSC 方面的潜在作用。
更新日期:2024-04-03
down
wechat
bug