当前位置: X-MOL 学术Water Resour. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Preferential Hydrologic States and Tipping Characteristics of Global Surface Soil Moisture
Water Resources Research ( IF 5.4 ) Pub Date : 2024-03-28 , DOI: 10.1029/2023wr034858
Vinit Sehgal 1, 2, 3 , Binayak P. Mohanty 1, 2
Affiliation  

A dynamic transition in soil hydrologic states through meteorological variability and terrestrial feedback governs soil-vegetation-climate (SVC) interactions, constrained by critical soil moisture (SM) thresholds. However, observational and scaling constraints limit critical SM threshold estimation at the remote-sensing (RS) footprint scale. Using global surface SM (θRS) from NASA’s Soil Moisture Active Passive (SMAP) satellite, we characterize the seasonal preferential hydrologic states of θRS and derive three tipping characteristics to estimate the intensity (Mean Tipping Depth, ε $\overline{\boldsymbol{\varepsilon }}$ ), frequency (Tipping Count, η), and duration (Mean Tipped Time, τ $\overline{\boldsymbol{\tau }\,}$ ) of the excursion of θRS from wet- to dry-average conditions. The preferential state provides the seasonally dominant hydrological states of θRS, while tipping characteristics capture the ecosystem linkages of the dynamic transition in θRS hydrologic states. Globally, θRS predominantly exhibits a (unimodal) dry-preferential state, especially over arid/semi-arid drylands and a unimodal wet-preferential θRS state in high-latitude boreal forests and tundra biomes. Prevalence of (bimodal) bistable θRS state overlaps with regions of strong positive SM-precipitation coupling and monsoonal climate in semi-arid/subhumid climates. Seasonal preferential hydrologic states co-vary with the regional variability in plant water stress threshold and land-atmospheric coupling strength. Tipping characteristics of θRS show sensitivity to intra-biome variability in SVC coexistence patterns and display high skill in partitioning global ecoregions. While ε $\overline{\boldsymbol{\varepsilon }}$ and η are climate-controlled, τ $\overline{\boldsymbol{\tau }\,}$ is moderated by soil and vegetation through their influence over θRS drydown during water-limited evapotranspiration. Preferential states and tipping characteristics find applications in quantifying SVC coexistence patterns, climate model diagnosis, and assessing ecosystem sensitivity to climate change.

中文翻译:

全球表层土壤水分的优先水文状态及倾倒特征

土壤水文状态通过气象变化和陆地反馈的动态转变控制着土壤-植被-气候(SVC)相互作用,并受到临界土壤湿度(SM)阈值的约束。然而,观测和尺度限制限制了遥感 (RS) 足迹尺度上的关键 SM 阈值估计。使用来自 NASA 土壤湿度主动被动 (SMAP) 卫星的全球表面 SM ( θ RS ),我们描述了θ RS的季节性优先水文状态,并推导出三个倾翻特征来估计强度(平均倾翻深度、 ε $\overline{\boldsymbol{\varepsilon }}$ )、频率(倾倒次数,η)和持续时间(平均倾倒时间, τ $\overline{\boldsymbol{\tau }\,}$ ) θ RS从湿平均条件到干平均条件的偏移。优先状态提供了θ RS的季节性主导水文状态,而倾倒特征捕获了θ RS水文状态动态转变的生态系统联系。在全球范围内,θ RS主要表现出(单峰)干旱优先状态,特别是在干旱/半干旱旱地,而在高纬度北方森林和苔原生物群落中则表现出单峰湿优先θ RS状态。 (双峰)双稳态θ RS状态的普遍性与半干旱/半湿润气候中强正 SM 降水耦合和季风气候的区域重叠。季节优先水文状态与植物水分胁迫阈值和陆地-大气耦合强度的区域变化共同变化。θ RS的倾斜特征显示出对 SVC 共存模式中生物群落内变异的敏感性,并显示出划分全球生态区域的高技能。尽管 ε $\overline{\boldsymbol{\varepsilon }}$ η是气候控制的, τ $\overline{\boldsymbol{\tau }\,}$ 在水限制蒸散过程中,土壤和植被通过影响θ RS干涸来调节。优先状态和倾倒特征可应用于量化 SVC 共存模式、气候模型诊断和评估生态系统对气候变化的敏感性。
更新日期:2024-03-29
down
wechat
bug