当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unveiling the dual tunability of dimension and pore structure in MAX-derived carbon via molten salt electrolysis
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2024-03-27 , DOI: 10.1016/j.cej.2024.150702
Sheng Pang , Jijun Lu , Liangwei Cong , Youpeng Xu , Yiwei Sun , Zhenqian Zhang , Jianwei Guo , Dong Wang , Xiao Yang , Guoyu Qian , Zhi Wang

3D construction or pore-forming of carbon nanosheets brings the materials exceptional energy storage performance. However, these strategies involve complicated procedures and challenging conditions. Herein, based on the structural regulation of a MAX phase, a facile method was proposed to prepare MAX-derived carbon (MDC) with dual tunability of dimension and pore structure via molten salt electrochemical etching-gaseous sulfur delamination coupling. Polyhedral structure TiSC and highly oriented structure TiSC were transformed into 3D Mesopore carbon nanoshells (3D Meso-CNSL) and 2D Mesopore carbon nanosheets (2D Meso-CNST) in one step. By matching the decomposition voltage of TiCl with that of PS-TiSC, Cl gas generated in situ was employed to enhance the porosity of the 3D Meso-CNSL, resulting in the formation of 3D meso/macro-porous carbon nanoshells (3D Meso/Macro-CNSL) with doubled pore volume (1.45 cm g) and specific surface area (649.97 m g). The 3D Meso/Macro-CNSL exhibits excellent capacity performance and cycle stability under high current density. The capacities are 674.8 mAh g and 501.5 mAh g after 1000 cycles at 5 A g and 10 A g, respectively. It is the first report on the direct delamination of MAX phases into 3D nanomaterials, presenting a new pathway for the precise regulation of the nanostructure of the MDCs.

中文翻译:

通过熔盐电解揭示 MAX 衍生碳的尺寸和孔隙结构的双重可调性

碳纳米片的 3D 结构或孔隙形成为材料带来了卓越的储能性能。然而,这些策略涉及复杂的程序和具有挑战性的条件。在此,基于MAX相的结构调控,提出了一种通过熔盐电化学蚀刻-气态硫分层耦合制备具有尺寸和孔结构双重可调性的MAX衍生碳(MDC)的简便方法。多面体结构TiSC和高度取向结构TiSC一步转化为3D介孔碳纳米壳(3D Meso-CNSL)和2D介孔碳纳米片(2D Meso-CNST)。通过将 TiCl 的分解电压与 PS-TiSC 的分解电压相匹配,利用原位产生的 Cl 气体来增强 3D Meso-CNSL 的孔隙率,从而形成 3D 介观/大孔碳纳米壳(3D Meso/Macro) -CNSL)具有双倍的孔体积(1.45 cm g)和比表面积(649.97 m g)。 3D Meso/Macro-CNSL在高电流密度下表现出优异的容量性能和循环稳定性。在5 A g和10 A g下循环1000次后,容量分别为674.8 mAh g和501.5 mAh g。这是第一份关于 MAX 相直接分层成 3D 纳米材料的报告,为精确调控 MDC 纳米结构提供了一条新途径。
更新日期:2024-03-27
down
wechat
bug