当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ab Initio Molecular Dynamics Simulation the Electron and Hole Polarons at the Interface between Water and the Surfaces of BiVO4
The Journal of Physical Chemistry C ( IF 3.7 ) Pub Date : 2024-03-22 , DOI: 10.1021/acs.jpcc.3c06847
Junyan Tao 1 , Guowei Liu 1 , Taifeng Liu 1
Affiliation  

Understanding the distribution of electrons and holes at the interface between a semiconductor and water is crucial for comprehending charge carrier separation in semiconductor-based photocatalytic water splitting. Nevertheless, this process is inadequately understood. In this study, we employed ab initio molecular dynamics (MD) to investigate the electron and hole polarons at the interface of water and BiVO4 (BVO) on both the (001) and (101) facets at room temperature. Our observations revealed that on both the (001) and (101) facets, electron polarons tend to localize on V sites in the second layer beneath the interface. In contrast, hole polarons on the (001) facet are predominantly localized on an oxygen atom within the bulk region, distant from the interface. On the (101) facet, the hole polaron remains localized at the interface. This distinct distribution of electron and hole polarons likely contributes to the charge separation between the (001) and (101) facets of BVO. These findings offer valuable insights into comprehending charge carrier distribution at the interfaces of other semiconductors and water, facilitating the design of high-efficiency charge separation semiconductor photocatalysts.

中文翻译:

从头算分子动力学模拟水与 BiVO4 表面界面处的电子和空穴极化子

了解半导体和水之间界面上电子和空穴的分布对于理解基于半导体的光催化水分解中的载流子分离至关重要。然而,这个过程还没有被充分理解。在这项研究中,我们采用从头算分子动力学 (MD) 来研究室温下水和 BiVO 4 (BVO)界面上 (001) 和 (101) 面上的电子和空穴极化子。我们的观察表明,在 (001) 和 (101) 面上,电子极化子往往集中在界面下方第二层的 V 位点上。相反,(001) 面上的空穴极化子主要集中在远离界面的本体区域内的氧原子上。在(101)面上,空穴极化子保持局域于界面处。电子和空穴极化子的这种独特分布可能有助于 BVO 的 (001) 和 (101) 面之间的电荷分离。这些发现为理解其他半导体和水界面上的载流子分布提供了宝贵的见解,有助于高效电荷分离半导体光催化剂的设计。
更新日期:2024-03-22
down
wechat
bug