当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum control of exciton wave functions in 2D semiconductors
Science Advances ( IF 13.6 ) Pub Date : 2024-03-20 , DOI: https://www.science.org/doi/10.1126/sciadv.adk6369
Jenny Hu, Etienne Lorchat, Xueqi Chen, Kenji Watanabe, Takashi Taniguchi, Tony F. Heinz, Puneet A. Murthy, Thibault Chervy

Excitons—bound electron-hole pairs—play a central role in light-matter interaction phenomena and are crucial for wide-ranging applications from light harvesting and generation to quantum information processing. A long-standing challenge in solid-state optics has been to achieve precise and scalable control over excitonic motion. We present a technique using nanostructured gate electrodes to create tailored potential landscapes for excitons in 2D semiconductors, enabling in situ wave function shaping at the nanoscale. Our approach forms electrostatic traps for excitons in various geometries, such as quantum dots, rings, and arrays thereof. We show independent spectral tuning of spatially separated quantum dots, achieving degeneracy despite material disorder. Owing to the strong light-matter coupling of excitons in 2D semiconductors, we observe unambiguous signatures of confined exciton wave functions in optical reflection and photoluminescence measurements. This work unlocks possibilities for engineering exciton dynamics and interactions at the nanometer scale, with implications for optoelectronic devices, topological photonics, and quantum nonlinear optics.

中文翻译:

二维半导体中激子波函数的量子控制

激子(束缚电子空穴对)在光与物质相互作用现象中发挥着核心作用,对于从光收集和产生到量子信息处理的广泛应用至关重要。固态光学领域的一个长期挑战是实现对激子运动的精确且可扩展的控制。我们提出了一种使用纳米结构栅电极为二维半导体中的激子创建定制的电势景观的技术,从而实现纳米尺度的原位波函数整形。我们的方法为各种几何形状的激子形成静电陷阱,例如量子点、环及其阵列。我们展示了空间分离的量子点的独立光谱调谐,尽管材料无序,但仍实现简并性。由于二维半导体中激子的强光-物质耦合,我们在光学反射和光致发光测量中观察到受限激子波函数的明确特征。这项工作开启了纳米尺度的激子动力学和相互作用工程的可能性,对光电器件、拓扑光子学和量子非线性光学具有影响。
更新日期:2024-03-22
down
wechat
bug