当前位置: X-MOL 学术Fuel Process. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Conversion of lignin-derived ketonic intermediate to biofuel products: Syngas-assisted vs. Conventional hydrotreating
Fuel Processing Technology ( IF 7.5 ) Pub Date : 2024-03-19 , DOI: 10.1016/j.fuproc.2024.108077
Ali Bakhtyari , Adele Sakhayi , Mohammad Reza Rahimpour , Adolfo Iulianelli

A new strategy for the transformation of an intermediate of the lignin conversion process, namely cyclohexanone, to fuel-grade products is assessed in this study. In this regard, the conventional hydrodeoxygenation process (with pure hydrogen) was compared to an innovative one with a simulated lignin-derived syngas stream in a wide range of reaction conditions (300–400 °C, 1–15 bar, and small-to-large feed-to-catalyst ratios) and over commercial molybdenum-based (nickle‑molybdenum (NiMo) and cobalt‑molybdenum(CoMo)) catalysts. Cyclohexanone conversion, product distribution, deoxygenation efficacy, and heating value were compared in each case. Cyclohexanone was transformed into cyclohexane, cyclohexene, benzene, cresols, phenol, toluene, and bi-cyclic compounds, which are beneficial in jet-fuel processing. Increasing the reaction temperature and pressure intensified the conversion of cyclohexanone (up to 87.8% conversion at 400 °C and 15 bar over both NiMo and CoMo catalysts), whereas increasing the feed-to-catalyst ratio reduced it. Operating conditions and the reducing gas (pure hydrogen or syngas) had major impacts on the conversion of cyclohexanone, deoxygenation efficiency, product distribution, and the heating value of the final product blend. The results of this study claim that cyclohexanone conversion to fuel-grade hydrocarbons (up to 97.61% over NiMo and 74.71% over CoMo catalysts) is a beneficial route and the conventional hydrodeoxygenation process can be replaced with the syngas-assisted one with a small change in production capacity, still large positive impact on the sustainability and environmental footprints of lignin conversion to biofuels.

中文翻译:

将木质素衍生的酮中间体转化为生物燃料产品:合成气辅助与传统加氢处理

本研究评估了将木质素转化过程的中间体(即环己酮)转化为燃料级产品的新策略。在这方面,将传统的加氢脱氧工艺(使用纯氢气)与在各种反应条件(300–400 °C、1–15 bar 和小到小压力)下使用模拟木质素衍生的合成气流的创新工艺进行了比较。 -大的进料与催化剂比率)以及超过商用钼基(镍钼(NiMo)和钴钼(CoMo))催化剂。比较每种情况下的环己酮转化率、产物分布、脱氧效率和热值。环己酮转化为环己烷、环己烯、苯、甲酚、苯酚、甲苯和双环化合物,这些化合物有利于喷气燃料加工。提高反应温度和压力可增强环己酮的转化率(在 400 °C 和 15 bar 的 NiMo 和 CoMo 催化剂上,转化率高达 87.8%),而提高原料与催化剂的比率则降低了环己酮的转化率。操作条件和还原气体(纯氢气或合成气)对环己酮的转化率、脱氧效率、产品分布和最终产品混合物的热值有重大影响。这项研究的结果表明,环己酮转化为燃料级碳氢化合物(比 NiMo 催化剂高达 97.61%,比 CoMo 催化剂高达 74.71%)是一条有益的途径,只需稍加改动即可用合成气辅助的加氢脱氧工艺替代传统的加氢脱氧工艺。在生产能力方面,对木质素转化为生物燃料的可持续性和环境足迹仍然有很大的积极影响。
更新日期:2024-03-19
down
wechat
bug