当前位置: X-MOL 学术NeuroImage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Developing an AI-empowered head-only ultra-high-performance gradient MRI system for high spatiotemporal neuroimaging
NeuroImage ( IF 5.7 ) Pub Date : 2024-02-23 , DOI: 10.1016/j.neuroimage.2024.120553
Dan Wu , Liyi Kang , Haotian Li , Ruicheng Ba , Zuozhen Cao , Qian Liu , Yingchao Tan , Qinwei Zhang , Bo Li , Jianmin Yuan

Recent advances in neuroscience requires high-resolution MRI to decipher the structural and functional details of the brain. Developing a high-performance gradient system is an ongoing effort in the field to facilitate high spatial and temporal encoding. Here, we proposed a head-only gradient system NeuroFrontier, dedicated for neuroimaging with an ultra-high gradient strength of 650 mT/m and 600 T/m/s. The proposed system features in 1) ultra-high power of 7MW achieved by running two gradient power amplifiers using a novel paralleling method; 2) a force/torque balanced gradient coil design with a two-step mechanical structure that allows high-efficiency and flexible optimization of the peripheral nerve stimulation; 3) a high-density integrated RF system that is miniaturized and customized for the head-only system; 4) an AI-empowered compressed sensing technique that enables ultra-fast acquisition of high-resolution images and AI-based acceleration in space for diffusion MRI (dMRI); and 5) a prospective head motion correction technique that effectively corrects motion artifacts in real-time with 3D optical tracking. We demonstrated the potential advantages of the proposed system in imaging resolution, speed, and signal-to-noise ratio for 3D structural MRI (sMRI), functional MRI (fMRI) and dMRI in neuroscience applications of submillimeter layer-specific fMRI and dMRI. We also illustrated the unique strength of this system for dMRI-based microstructural mapping, e.g., enhanced lesion contrast at short diffusion-times or high b-values, and improved estimation accuracy for cellular microstructures using diffusion-time-dependent dMRI or for neurite microstructures using -space approaches.

中文翻译:

开发人工智能驱动的头部超高性能梯度 MRI 系统,用于高时空神经成像

神经科学的最新进展需要高分辨率 MRI 来破译大脑的结构和功能细节。开发高性能梯度系统是该领域正在进行的努力,以促进高空间和时间编码。在这里,我们提出了一种仅头部梯度系统 NeuroFrontier,专用于神经成像,具有 650 mT/m 和 600 T/m/s 的超高梯度强度。该系统具有以下特点:1)通过采用新颖的并联方法运行两个梯度功率放大器,实现了7MW的超高功率; 2)力/力矩平衡梯度线圈设计,两步式机械结构,可高效、灵活地优化周围神经刺激; 3)针对头显系统小型化定制的高密度集成射频系统; 4)人工智能驱动的压缩传感技术,能够超快速采集高分辨率图像,并在空间中基于人工智能加速扩散磁共振成像(dMRI); 5) 前瞻性头部运动校正技术,通过 3D 光学跟踪实时有效地校正运动伪影。我们展示了所提出的系统在亚毫米层特异性 fMRI 和 dMRI 神经科学应用中的 3D 结构 MRI (sMRI)、功能 MRI (fMRI) 和 dMRI 在成像分辨率、速度和信噪比方面的潜在优势。我们还说明了该系统在基于 dMRI 的微结构绘图方面的独特优势,例如,在短扩散时间或高 b 值下增强病变对比度,并使用扩散时间依赖性 dMRI 提高细胞微结构或神经突微结构的估计精度使用 -space 方法。
更新日期:2024-02-23
down
wechat
bug