当前位置: X-MOL 学术Fuel Process. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly selective catalytic hydrodeoxygenation of guaiacol to benzene in continuous operation mode
Fuel Processing Technology ( IF 7.5 ) Pub Date : 2024-02-21 , DOI: 10.1016/j.fuproc.2024.108064
J. Gracia , A. Ayala-Cortés , C. Di Stasi , J. Remón , D. Torres , J.L. Pinilla , I. Suelves

Benzene, mostly produced from fossil fuel sources, is an essential chemical to many modern industries. Alternatively to non-renewable methods currently used, the present work explores using fast pyrolysis biomass-derived bio-oils to furnish this valuable platform molecule. Notably, we report for the first time the impact of different operational parameters on the highly selective continuous catalytic hydrodeoxygenation of guaiacol, a bio-oil model compound, into benzene using a MoC/CNF-based catalyst. The parametric study includes a first evaluation of the effect of the hydrogen pressure (25, 50 and 75 bar), temperature (300, 325 and 350 °C) and weight hourly space velocity (4 and 10 g g h) on the guaiacol conversion and product distribution, and a subsequent long-term evaluation (30 h on stream) of the catalyst under appropriate processing conditions The experimental results revelated that our MoC/CNF was able to achieve a conversion of 90–98% with a relative amount of benzene in the liquid product up to 81% for at least 30 h without any sign of deactivation at 75 bar of H and 350 °C, which is a landmark achievement in the conversion of bio-oil derived molecules into platform chemicals.

中文翻译:

连续操作模式下愈创木酚高选择性催化加氢脱氧制苯

苯主要由化石燃料生产,是许多现代工业的重要化学品。作为目前使用的不可再生方法的替代方案,目前的工作探索使用快速热解生物质衍生的生物油来提供这种有价值的平台分子。值得注意的是,我们首次报告了不同操作参数对使用基于 MoC/CNF 的催化剂将愈创木酚(一种生物油模型化合物)高选择性连续加氢脱氧为苯的影响。参数研究包括首次评估氢气压力(25、50 和 75 bar)、温度(300、325 和 350 °C)和重时空速(4 和 10 gg h)对愈创木酚转化率和产品分布,以及随后在适当的加工条件下对催化剂进行的长期评估(运行 30 小时)实验结果表明,我们的 MoC/CNF 能够以相对量的苯实现 90-98% 的转化率在 75 bar H 和 350 °C 下,液体产品在至少 30 小时内高达 81%,没有任何失活迹象,这是将生物油衍生分子转化为平台化学品的里程碑式成就。
更新日期:2024-02-21
down
wechat
bug