当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of micro-nano hybrid structure based on carbon nanotube whisker and alumina for thermally conductive yet electrically insulating silicone rubber composites
Composites Science and Technology ( IF 9.1 ) Pub Date : 2024-02-12 , DOI: 10.1016/j.compscitech.2024.110495
Xiaowang Ji , Zhaoyu Lu , Junyan Wang , Neng Ye , Huan Zhang , Letian Zhou , Jingchao Li , Yonglai Lu

High-performance electronics urgently need more effective thermally conductive rubber composites to solve interfacial heat transfer problems in the thermal management systems. Tiny amounts nanocarbon materials (NCM) can significantly improve the thermal conductivity of conventional ceramic-filled rubber composites, but the volume exclusion effect of micrometer ceramic fillers makes NCM highly susceptible to the formation of the conductive pathways, which inevitably leads to the substantial decrease in the volume resistivity of the materials, posing a safety hazard, such as short circuits, to electronic devices. Here, we report an electrostatic self-assembly method to prepare CNW@n-AlO hybrids by loading nano-alumina (n-AlO) onto carbon nanotube whiskers (CNW) and co-filling them with micrometer alumina (m-AlO) to silicone rubber, constructing a micro-nano-multi-level hybrid network structure, which can fully utilize the high thermal conductivity while shielding the electrical conductivity of CNW. The resulting composite filled with 2 phr of CNW@n-AlO exhibits a significantly enhanced thermal conductivity of 1.137 W/(m·K) and a high volume resistance of 1.323 × 10 Ω cm, and is proved to be used as an excellent thermal interface material to assist the heat dissipation of the microelectronic chip. This study provides a facile and effective strategy for the design of thermally conductive yet electrically insulating rubber composites filled with CNW, which shows a bright application prospect in the thermal management of high-performance electronic devices.

中文翻译:

基于碳纳米管晶须和氧化铝的微纳杂化结构的导热电绝缘硅橡胶复合材料的构建

高性能电子产品迫切需要更有效的导热橡胶复合材料来解决热管理系统中的界面传热问题。微量纳米碳材料(NCM)可以显着提高传统陶瓷填充橡胶复合材料的导热系数,但微米级陶瓷填料的体积排斥效应使得NCM极易形成导电通路,这不可避免地导致导热系数的大幅下降。材料的体积电阻率,对电子设备造成短路等安全隐患。在这里,我们报告了一种静电自组装方法,通过将纳米氧化铝(n-Al2O)负载到碳纳米管晶须(CNW)上并将其与微米氧化铝(m-Al2O)共同填充到硅树脂中来制备CNW@n-Al2O3杂化物橡胶,构建微纳多级混合网络结构,可以充分利用CNW的高导热性,同时屏蔽CNW的导电性。填充2份CNW@n-Al2O3的复合材料表现出显着增强的热导率(1.137 W/(m·K))和高体积电阻(1.323 × 10 Ω·cm),并被证明可用作优异的导热材料。辅助微电子芯片散热的界面材料。该研究为CNW填充导热且电绝缘的橡胶复合材料的设计提供了一种简便有效的策略,在高性能电子设备的热管理中显示出广阔的应用前景。
更新日期:2024-02-12
down
wechat
bug