当前位置: X-MOL 学术Compos. Part A Appl. Sci. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Through-thickness frontal polymerization: Process development and optimization
Composites Part A: Applied Science and Manufacturing ( IF 8.7 ) Pub Date : 2024-02-09 , DOI: 10.1016/j.compositesa.2024.108084
S. Vyas , N.A. Parikh , T.C. Price , D.P. Patel , T.B. Le , P.H. Geubelle , N.R. Sottos

Current methods for the manufacture of fiber-reinforced polymer composites (FRPCs) are energy intensive, time consuming, and have adverse effects on the environment. Frontal polymerization (FP) is an out-of-autoclave, self-sustaining cure process garnering significant adoption by enabling rapid and energy-efficient manufacture of FRPCs. Prior FP-based manufacture of FRPCs rely on in-plane triggers to initiate the reaction. In the present study, we adopt through-thickness curing of carbon FRPCs with emphasis on the energy input required and the resulting composite properties. High energy input resulted in high glass transition temperature ( °C), fiber volume fraction (), and low void content (). Computational modeling and optimization complement the experiments with focus on further reducing the energy whilst maintaining the favorable properties achieved at high energy inputs. A reduction in energy resulted while maintaining similar performance.

中文翻译:

全厚度正面聚合:工艺开发和优化

当前制造纤维增强聚合物复合材料(FRPC)的方法能源密集、耗时,并且对环境有不利影响。正面聚合 (FP) 是一种无需高压釜、自我维持的固化工艺,通过实现 FRPC 的快速、节能制造而获得广泛采用。先前基于 FP 的 FRPC 制造依赖于平面内触发器来启动反应。在本研究中,我们采用碳 FRPC 的全厚度固化,重点关注所需的能量输入和由此产生的复合材料性能。高能量输入导致高玻璃化转变温度 (°C)、高纤维体积分数 () 和低空隙含量 ()。计算建模和优化对实验进行了补充,重点是进一步降低能量,同时保持在高能量输入下实现的有利性能。在保持相似性能的同时,能源减少了。
更新日期:2024-02-09
down
wechat
bug