当前位置: X-MOL 学术Nat. Struct. Mol. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1
Nature Structural & Molecular Biology ( IF 16.8 ) Pub Date : 2024-02-08 , DOI: 10.1038/s41594-023-01203-4
Jonas Düring , Madita Wolter , Julia J. Toplak , Camilo Torres , Olexandr Dybkov , Thornton J. Fokkens , Katherine E. Bohnsack , Henning Urlaub , Wieland Steinchen , Christian Dienemann , Sonja Lorenz

Ubiquitin ligases (E3s) are pivotal specificity determinants in the ubiquitin system by selecting substrates and decorating them with distinct ubiquitin signals. However, structure determination of the underlying, specific E3-substrate complexes has proven challenging owing to their transient nature. In particular, it is incompletely understood how members of the catalytic cysteine-driven class of HECT-type ligases (HECTs) position substrate proteins for modification. Here, we report a cryogenic electron microscopy (cryo-EM) structure of the full-length human HECT HACE1, along with solution-based conformational analyses by small-angle X-ray scattering and hydrogen–deuterium exchange mass spectrometry. Structure-based functional analyses in vitro and in cells reveal that the activity of HACE1 is stringently regulated by dimerization-induced autoinhibition. The inhibition occurs at the first step of the catalytic cycle and is thus substrate-independent. We use mechanism-based chemical crosslinking to reconstitute a complex of activated, monomeric HACE1 with its major substrate, RAC1, determine its structure by cryo-EM and validate the binding mode by solution-based analyses. Our findings explain how HACE1 achieves selectivity in ubiquitinating the active, GTP-loaded state of RAC1 and establish a framework for interpreting mutational alterations of the HACE1–RAC1 interplay in disease. More broadly, this work illuminates central unexplored aspects in the architecture, conformational dynamics, regulation and specificity of full-length HECTs.



中文翻译:

泛素连接酶 HACE1 的自抑制和底物识别的结构机制

泛素连接酶 (E3) 通过选择底物并用不同的泛素信号修饰它们,成为泛素系统中关键的特异性决定因素。然而,由于其瞬态性质,底层特定 E3 底物复合物的结构确定具有挑战性。特别是,催化半胱氨酸驱动的 HECT 型连接酶 (HECT) 类型的成员如何定位底物蛋白进行修饰尚不完全清楚。在这里,我们报告了全长人 HECT HACE1 的低温电子显微镜 (cryo-EM) 结构,以及通过小角 X 射线散射和氢氘交换质谱进行的基于溶液的构象分析。体外和细胞内基于结构的功能分析表明,HACE1 的活性受到二聚化诱导的自抑制的严格调节。这种抑制发生在催化循环的第一步,因此与底物无关。我们使用基于机制的化学交联来重建活化的单体 HACE1 及其主要底物 RAC1 的复合物,通过冷冻电镜确定其结构,并通过基于溶液的分析验证结合模式。我们的研究结果解释了 HACE1 如何实现选择性泛素化 RAC1 的活性、GTP 负载状态,并建立了一个解释疾病中 HACE1-RAC1 相互作用的突变改变的框架。更广泛地说,这项工作阐明了全长 HECT 的架构、构象动力学、调节和特异性方面未探索的核心方面。

更新日期:2024-02-08
down
wechat
bug