当前位置: X-MOL 学术Chem. Res. Toxicol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanisms of Nitrosamine Mutagenicity and Their Relationship to Rodent Carcinogenic Potency
Chemical Research in Toxicology ( IF 4.1 ) Pub Date : 2024-02-05 , DOI: 10.1021/acs.chemrestox.3c00327
David J. Snodin 1 , Alejandra Trejo-Martin 2 , David J. Ponting 3 , Graham F. Smith 4 , Andreas Czich 5 , Kevin Cross 6 , Laura Custer 7 , Joanne Elloway 8 , Nigel Greene 9 , Amit S. Kalgutkar 10 , Susanne A. Stalford 3 , Rachael E. Tennant 3 , Esther Vock 11 , Adam Zalewski 12 , Verena Ziegler 12 , Krista L. Dobo 13
Affiliation  

A thorough literature review was undertaken to understand how the pathways of N-nitrosamine transformation relate to mutagenic potential and carcinogenic potency in rodents. Empirical and computational evidence indicates that a common radical intermediate is created by CYP-mediated hydrogen abstraction at the α-carbon; it is responsible for both activation, leading to the formation of DNA-reactive diazonium species, and deactivation by denitrosation. There are competing sites of CYP metabolism (e.g., β-carbon), and other reactive species can form following initial bioactivation, although these alternative pathways tend to decrease rather than enhance carcinogenic potency. The activation pathway, oxidative dealkylation, is a common reaction in drug metabolism and evidence indicates that the carbonyl byproduct, e.g., formaldehyde, does not contribute to the toxic properties of N-nitrosamines. Nitric oxide (NO), a side product of denitrosation, can similarly be discounted as an enhancer of N-nitrosamine toxicity based on carcinogenicity data for substances that act as NO-donors. However, not all N-nitrosamines are potent rodent carcinogens. In a significant number of cases, there is a potency overlap with non-N-nitrosamine carcinogens that are not in the Cohort of Concern (CoC; high-potency rodent carcinogens comprising aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds), while other N-nitrosamines are devoid of carcinogenic potential. In this context, mutagenicity is a useful surrogate for carcinogenicity, as proposed in the ICH M7 (R2) (2023) guidance. Thus, in the safety assessment and control of N-nitrosamines in medicines, it is important to understand those complementary attributes of mechanisms of mutagenicity and structure–activity relationships that translate to elevated potency versus those which are associated with a reduction in, or absence of, carcinogenic potency.

中文翻译:

亚硝胺致突变机制及其与啮齿类动物致癌效力的关系

我们进行了彻底的文献综述,以了解N-亚硝胺转化途径与啮齿动物的致突变潜力和致癌效力之间的关系。经验和计算证据表明,常见的自由基中间体是通过 CYP 介导的 α-碳夺氢产生的;它负责激活,导致 DNA 反应性重氮物质的形成,以及通过脱亚硝化而失活。CYP 代谢存在竞争位点(例如,β-碳),并且在初始生物活化后可以形成其他活性物质,尽管这些替代途径往往会降低而不是增强致癌效力。活化途径,氧化脱烷基化,是药物代谢中的常见反应,并且证据表明羰基副产物,例如甲醛,不会导致N-亚硝胺的毒性。一氧化氮 (NO) 是脱亚硝化的副产物,根据作为 NO 供体的物质的致癌性数据,它同样可以被视为N -亚硝胺毒性的增强剂。然而,并非所有N-亚硝胺都是强效啮齿动物致癌物。在大量情况下,与不在关注队列(CoC)中的非N-亚硝胺致癌物存在效力重叠;包括黄曲霉毒素样、 N-亚硝基-和烷基偶氮在内的高效啮齿动物致癌物化合物),而其他N-亚硝胺则没有致癌潜力。在这种情况下,正如 ICH M7 (R2) (2023) 指南中所提出的,致突变性是致癌性的有用替代指标。因此,在药物中N-亚硝胺的安全评估和控制中,了解致突变性机制和结构-活性关系的互补属性非常重要,这些属性会转化为效力升高,而不是与减少或缺乏相关的效力。 ,致癌效力。
更新日期:2024-02-05
down
wechat
bug