当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-assembled liquid metal nanoporous film with durability for efficient phase-change thermal energy management via surface and interface engineering
Materials Today ( IF 24.2 ) Pub Date : 2024-02-02 , DOI: 10.1016/j.mattod.2024.01.007
Ben Chu , Bo Liu , Benwei Fu , Ruitong Wang , Weizheng Cheng , Peng Tao , Chengyi Song , Wen Shang , Michael D. Dickey , Tao Deng

Films with nanoengineered surfaces have found extensive utilization in versatile applications, such as freshwater harvesting, water purification, steam generation and thermal energy management. Herein, we develop a liquid metal (LM) nanoporous film on a copper substrate via a simple and scalable bubble-induced self-assembly method. The LM nanoporous film not only provides abundant nucleation sites of bubbles due to nanoscale pores, but also generates CuGa intermetallic compound (IMC) as a thermal interface layer with low interfacial resistance due to alloying with the copper substrate. When the film is used in ethanol-based boiling system, it shows a 172% enhanced heat transfer coefficient compared to the pristine copper. In addition, the metallic wetting force between the LM nanoporous film and CuGa IMC results in a durable nanoporous film. When the LM nanoporous film is utilized for the phase-change thermal energy management of a high-power-density light emitting diode, it leads to a distinct decrease in temperature by 20.7 ℃ relative to the pristine copper. This work provides a strategy to combine nanoengineered surfaces with interface engineering to enhance phase-change heat transfer, which can result in efficient energy transport in various energy-related applications.

中文翻译:

自组装液态金属纳米多孔薄膜具有耐久性,可通过表面和界面工程实现高效的相变热能管理

具有纳米工程表面的薄膜已广泛应用于多种应用,例如淡水收集、水净化、蒸汽发生和热能管理。在这里,我们通过简单且可扩展的气泡诱导自组装方法在铜基板上开发了液态金属(LM)纳米多孔薄膜。 LM纳米多孔薄膜不仅因纳米级孔隙而提供丰富的气泡成核位点,而且由于与铜基底合金化,生成CuGa金属间化合物(IMC)作为具有低界面电阻的热界面层。当该薄膜用于乙醇基沸腾系统时,与原始铜相比,其传热系数提高了 172%。此外,LM 纳米多孔薄膜和 CuGa IMC 之间的金属润湿力形成了耐用的纳米多孔薄膜。当LM纳米多孔薄膜用于高功率密度发光二极管的相变热能管理时,相对于原始铜,温度明显降低了20.7℃。这项工作提供了一种将纳米工程表面与界面工程相结合以增强相变传热的策略,从而可以在各种能源相关应用中实现高效的能量传输。
更新日期:2024-02-02
down
wechat
bug