当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Superconducting microwave cavities and qubits for quantum information systems
Applied Physics Reviews ( IF 15.0 ) Pub Date : 2024-01-18 , DOI: 10.1063/5.0155213
Alex Krasnok 1, 2 , Pashupati Dhakal 3 , Arkady Fedorov 4 , Pedro Frigola 5 , Michael Kelly 6 , Sergey Kutsaev 5
Affiliation  

Superconducting microwave cavities featuring ultrahigh Q-factors, which measure the efficiency of energy storage in relation to energy loss in a system, are revolutionizing quantum computing by providing long coherence times exceeding 1 ms, crucial for the development of scalable multi-qubit quantum systems with low error rates. In this work, we provide an in-depth analysis of recent advances in ultrahigh Q-factor cavities, integration of Josephson junction-based qubits, and bosonic-encoded qubits in 3D cavities. We examine the sources of quantum state dephasing caused by damping and noise mechanisms in cavities and qubits, highlighting the critical challenges that need to be addressed to achieve even higher coherence times. We critically survey the latest progress made in implementing single 3D qubits using superconducting materials, normal metals, and multi-qubit and multi-state quantum systems. Our work sheds light on the promising future of this research area, including novel materials for cavities and qubits, modes with nontrivial topological properties, error correction techniques for bosonic qubits, and new light–matter interaction effects.

中文翻译:

用于量子信息系统的超导微波腔和量子位

超导微波腔具有超高 Q 因子,可测量与系统中能量损失相关的能量存储效率,通过提供超过 1 ms 的长相干时间,正在彻底改变量子计算,这对于开发可扩展的多量子位量子系统至关重要错误率低。在这项工作中,我们深入分析了超高 Q 因子腔、约瑟夫森结量子位集成以及 3D 腔中玻色子编码量子位的最新进展。我们研究了由腔和量子位中的阻尼和噪声机制引起的量子态相移的来源,强调了实现更高相干时间需要解决的关键挑战。我们批判性地调查了使用超导材料、普通金属以及多量子位和多态量子系统实现单 3D 量子位的最新进展。我们的工作揭示了该研究领域的光明前景,包括用于空腔和量子位的新型材料、具有重要拓扑特性的模式、玻色子量子位的纠错技术以及新的光与物质相互作用效应。
更新日期:2024-01-18
down
wechat
bug