当前位置: X-MOL 学术Int. J. Coal Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of ScCO2-H2O treatment duration on the microscopic structure of coal reservoirs: Implications for CO2 geological sequestration in coal
International Journal of Coal Geology ( IF 5.6 ) Pub Date : 2023-12-30 , DOI: 10.1016/j.coal.2023.104439
Yarui Guan , Zhe Zhou , Zhaolong Ge , Qinglin Deng , Yunzhong Jia , Shan Huang , Changjiang Chen , Shihui Gong

The microstructure of coal reservoirs, especially the pore structure, alters as a result of physicochemical reactions between the CO2 acidic fluid and coals. However, it is still unclear what controls this process and how the pore structure properties of coal alter by the action of CO2 acid fluids change over time. The objective of this study is to identify the underlying mechanism by analyzing the changes in the mineral composition, surface roughness, as well as micropore and mesopore structure of anthracite and bituminous coal when exposed to supercritical CO2 (ScCO2)-H2O. The results indicate that coal reservoirs primarily undergo processes of adsorption expansion and mineral dissolution/precipitation. Among these, adsorption expansion concluded or weakened after 7 days, with mineral precipitation gradually becoming the dominant factor, which results in more secure geological CO2 storage (GCS). Furthermore, comparative analysis of anthracite and bituminous coal with untreated and long-term treatment demonstrates that anthracite exhibits higher CO2 storage capacity and greater wettability. Consequently, anthracite is more suitable as a target reservoir for GCS compared to bituminous coal. These results, therefore, offer a theoretical foundation and a guide for choosing GCS sites in deep un-minable coal seams.



中文翻译:

ScCO2-H2O 处理时间对煤储层微观结构的影响:对煤中 CO2 地质封存的影响

由于CO 2酸性流体与煤之间的物理化学反应,煤储层的微观结构,特别是孔隙结构发生改变。然而,目前尚不清楚是什么控制了这一过程,以及煤的孔隙结构特性如何通过CO 2酸性流体的作用随时间变化而改变。本研究的目的是通过分析无烟煤和烟煤暴露于超临界 CO 2 (ScCO 2 )-H 2 O时矿物成分、表面粗糙度以及微孔和中孔结构的变化,以确定其潜在机制。结果表明,煤储层主要经历吸附膨胀和矿物溶解/沉淀过程。其中,吸附膨胀在7天后结束或减弱,矿物沉淀逐渐成为主导因素,从而导致更安全的地质CO 2储存(GCS)。此外,对未经处理和长期处理的无烟煤和烟煤的比较分析表明,无烟煤表现出更高的CO 2存储能力和更大的润湿性。因此,与烟煤相比,无烟煤更适合作为 GCS 的目标储层。因此,这些结果为深部不可开采煤层GCS选址提供了理论基础和指导。

更新日期:2023-12-30
down
wechat
bug