当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioinspired, heredity-derived hierarchical bulk multifunctional copper alloys
Materials Today ( IF 24.2 ) Pub Date : 2023-11-25 , DOI: 10.1016/j.mattod.2023.11.003
Peijian Shi , Zhe Shen , Hongguang Wang , Zhi Li , Yejun Gu , Yi Li , Jie Yan , Zhongze Lin , Mingyang Wang , Yinpan Yang , Chunyan Ling , Biao Ding , Na Min , Jianchao Peng , Junhua Luan , Tengshi Liu , Weili Ren , Zuosheng Lei , Yangtao Zhou , Yi Liu , Ningning Liang , Peter A. van Aken , Yang Ren , Yunbo Zhong , C.T. Liu , Huajian Gao , Yuntian Zhu

Bioinspired hierarchical design demonstrates a promising microstructural solution to circumvent multiple intricate property trade-offs in artificial materials. However, it remains extremely challenging to tailor structural hierarchies feasibly and synthetically, particularly for bulk materials. Here, a counterintuitive strategy is reported–exploring multiscale microstructural heredities for highly-developed dendritic hierarchies in as-cast bulk alloys. During optimized thermomechanical processing, we carefully control these dendrites to be progressively deformed, elongated, aligned and refined, rather than completely destroying them as in conventional alloy processing paradigms. As such, a hierarchical fibrous lamellar (HFL) structure–resembling those of shell and bamboo–is controllably designed in a technologically-important CuCrZr alloy. This innovative HFL design promotes multiple synergetic micro-mechanisms with sequential multiscale interactions and salient biomimetic attributes, thereby affording exceptional multifunctionality, especially record-high strength–ductility–conductivity combination. At more fundamental levels, multiple previously inaccessible deformation and reinforcement mechanisms are activated by exploiting the HFL structure-enabled complex internal stress condition. They perform and interact at multi-length-scales from intense diversified dislocation trapping, massive stacking-fault proliferation, 9R-phase-assited nano-twinning, self-buffering shear bands to ever-intensified hetero-deformation-induced hardening. These scenarios even create superior, strain-rate-tolerant dynamic properties far exceeding conventional homogeneous-structured counterparts. Dendrites exist ubiquitously, yet generally undesirable, in metallic materials, whereas our ‘bioinspired, heredity-derived’ strategy counterintuitively utilizes them, realizing unprecedented high figure-of-merit multifunctionality.



中文翻译:


受生物启发、遗传衍生的分级块状多功能铜合金



仿生分层设计展示了一种有前途的微观结构解决方案,可以规避人造材料中多种复杂的性能权衡。然而,以可行且综合的方式定制结构层次仍然极具挑战性,特别是对于散装材料。在这里,报告了一种违反直觉的策略——探索铸态合金中高度发达的枝晶层次的多尺度微观结构遗传。在优化的热机械加工过程中,我们仔细控制这些枝晶逐渐变形、拉长、排列和细化,而不是像传统合金加工范例那样完全破坏它们。因此,分层纤维层状 (HFL) 结构(类似于贝壳和竹子的结构)是在技术上重要的 CuCrZr 合金中可控设计的。这种创新的 HFL 设计促进了具有连续多尺度相互作用和显着仿生属性的多种协同微机制,从而提供了卓越的多功能性,特别是创纪录的高强度-延展性-导电性组合。在更基本的层面上,通过利用 HFL 结构支持的复杂内应力条件,可以激活多种以前无法实现的变形和加固机制。它们在多长度尺度上表现和相互作用,从强烈多样化的位错捕获、大规模堆垛层错扩散、9R相辅助纳米孪晶、自缓冲剪切带到不断增强的异质变形诱导硬化。这些场景甚至创造了远远超过传统均质结构同类产品的卓越的耐应变率动态特性。 枝晶在金属材料中普遍存在,但通常是不受欢迎的,而我们的“受生物启发、遗传衍生”策略却违反直觉地利用了它们,实现了前所未有的高品质因数多功能性。

更新日期:2023-11-25
down
wechat
bug