当前位置: X-MOL 学术npj Quantum Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dopant-assisted stabilization of negatively charged single nitrogen-vacancy centers in phosphorus-doped diamond at low temperatures
npj Quantum Information ( IF 7.6 ) Pub Date : 2023-10-27 , DOI: 10.1038/s41534-023-00777-7
Jianpei Geng , Tetyana Shalomayeva , Mariia Gryzlova , Amlan Mukherjee , Santo Santonocito , Dzhavid Dzhavadzade , Durga Bhaktavatsala Rao Dasari , Hiromitsu Kato , Rainer Stöhr , Andrej Denisenko , Norikazu Mizuochi , Jörg Wrachtrup

Charge state instabilities have been a bottleneck for the implementation of solid-state spin systems and pose a major challenge to the development of spin-based quantum technologies. Here we investigate the stabilization of negatively charged nitrogen-vacancy (NV) centers in phosphorus-doped diamond at liquid helium temperatures. Photoionization of phosphorous donors in conjunction with charge diffusion at the nanoscale enhances NV0 to NV conversion and stabilizes the NV charge state without the need for an additional repump laser. The phosphorus-assisted stabilization is explored and confirmed both with experiments and our theoretical model. Stable photoluminescence-excitation spectra are obtained for NV centers created during the growth. The fluorescence is continuously recorded under resonant excitation to real-time monitor the charge state and the ionization and recombination rates are extracted from time traces. We find a linear laser power dependence of the recombination rate as opposed to the conventional quadratic dependence, which is attributed to the photo-ionization of phosphorus atoms.



中文翻译:

低温下掺磷金刚石中带负电的单氮空位中心的掺杂剂辅助稳定

电荷态不稳定性一直是固态自旋系统实现的瓶颈,并对基于自旋的量子技术的发展构成重大挑战。在这里,我们研究了液氦温度下掺磷金刚石中带负电的氮空位(NV - )中心的稳定性。磷供体的光电离与纳米级的电荷扩散相结合,增强了 NV 0到 NV - 的转换并稳定了 NV -电荷状态,而无需额外的再泵浦激光器。通过实验和理论模型对磷辅助稳定进行了探索和证实。生长过程中产生的NV -中心获得稳定的光致发光激发光谱。在共振激发下连续记录荧光,以实时监测电荷状态,并从时间轨迹中提取电离和重组率。我们发现复合率呈线性激光功率依赖性,而不是传统的二次依赖性,这归因于磷原子的光电离。

更新日期:2023-10-28
down
wechat
bug