当前位置: X-MOL 学术npj Quantum Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrical manipulation of a single electron spin in CMOS using a micromagnet and spin-valley coupling
npj Quantum Information ( IF 7.6 ) Pub Date : 2023-10-23 , DOI: 10.1038/s41534-023-00776-8
Bernhard Klemt , Victor Elhomsy , Martin Nurizzo , Pierre Hamonic , Biel Martinez , Bruna Cardoso Paz , Cameron Spence , Matthieu C. Dartiailh , Baptiste Jadot , Emmanuel Chanrion , Vivien Thiney , Renan Lethiecq , Benoit Bertrand , Heimanu Niebojewski , Christopher Bäuerle , Maud Vinet , Yann-Michel Niquet , Tristan Meunier , Matias Urdampilleta

For semiconductor spin qubits, complementary-metal-oxide-semiconductor (CMOS) technology is a promising candidate for reliable and scalable fabrication. Making the direct leap from academic fabrication to qubits fully fabricated by industrial CMOS standards is difficult without intermediate solutions. With a flexible back-end-of-line (BEOL), functionalities such as micromagnets or superconducting circuits can be added in a post-CMOS process to study the physics of these devices or achieve proofs-of-concept. Once the process is established, it can be incorporated in the foundry-compatible process flow. Here, we study a single electron spin qubit in a CMOS device with a micromagnet integrated in the flexible BEOL. We exploit the synthetic spin orbit coupling (SOC) to control the qubit via electric fields and we investigate the spin-valley physics in the presence of SOC where we show an enhancement of the Rabi frequency at the spin-valley hotspot. Finally, we probe the high frequency noise in the system using dynamical decoupling pulse sequences and demonstrate that charge noise dominates the qubit decoherence in this range.



中文翻译:

使用微磁体和自旋谷耦合对 CMOS 中的单电子自旋进行电操纵

对于半导体自旋量子位,互补金属氧化物半导体 (CMOS) 技术是实现可靠且可扩展制造的有希望的候选技术。如果没有中间解决方案,从学术制造直接跨越到完全按照工业 CMOS 标准制造的量子位是很困难的。借助灵活的后端 (BEOL),可以在后 CMOS 工艺中添加微磁体或超导电路等功能,以研究这些设备的物理原理或实现概念验证。一旦建立了工艺,就可以将其合并到与铸造厂兼容的工艺流程中。在这里,我们研究了 CMOS 器件中的单电子自旋量子位,该器件在柔性 BEOL 中集成了微磁体。我们利用合成自旋轨道耦合 (SOC) 通过电场控制量子位,并研究了 SOC 存在下的自旋谷物理现象,其中显示了自旋谷热点处拉比频率的增强。最后,我们使用动态去耦脉冲序列探测系统中的高频噪声,并证明电荷噪声在该范围内主导量子位退相干。

更新日期:2023-10-26
down
wechat
bug