当前位置: X-MOL 学术Curr. Opin. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An overview of production of hydrogen and carbon nanomaterials via thermocatalytic decomposition of methane
Current Opinion in Chemical Engineering ( IF 8.0 ) Pub Date : 2023-09-30 , DOI: 10.1016/j.coche.2023.100968
Morteza Hadian , Kay Buist , Hans Kuipers

The ever-increasing global demand for energy and functional materials, coupled with the growing threat of global warming, necessitates the development of new technologies for the large-scale production of green energy carriers and materials. ThermoCatalytic Decomposition (TCD) of methane is an environmentally and economically favorable approach to produce hydrogen and valuable carbon nanomaterials simultaneously, without direct greenhouse gas emissions. The chemical kinetics of TCD can be captured by considering the maximum reaction rate and deactivation factor. However, additional studies are required to obtain a deeper understanding of the deactivation mechanisms that limit catalyst performance over time. Moreover, the development of sustainable catalysts that align with the desired application of the carbon product is essential. In order to advance the development of TCD reactors and processes, further research is urgently needed. The challenges that need to be addressed include the impact of catalyst particle growth on the reaction and reactor performance. Fluidized bed reactors (FBRs) are considered the most viable units for TCD, but require comprehensive experimental and modeling studies to assess and overcome the design and operational challenges. Numerical modeling is crucial for designing, optimizing, and evaluating TCD reactors and processes. Coupled Computational Fluid Dynamics–Discrete Element Method models with intraparticle models such as MultiGrain Model, can provide a more representation view of the complex multiscale phenomena of TCD in FBRs, enabling researchers and engineers to explore effectively different reactor concepts and designs.

中文翻译:

通过甲烷热催化分解生产氢和碳纳米材料的概述

全球对能源和功能材料的需求不断增加,加上全球变暖的威胁日益严重,需要开发大规模生产绿色能源载体和材料的新技术。甲烷热催化分解 (TCD) 是一种对环境和经济都有利的方法,可同时生产氢气和有价值的碳纳米材料,且不会直接排放温室气体。TCD 的化学动力学可以通过考虑最大反应速率和失活因子来捕获。然而,需要进行更多的研究来更深入地了解随着时间的推移限制催化剂性能的失活机制。此外,开发符合碳产品所需应用的可持续催化剂至关重要。为了推进TCD反应器和工艺的发展,迫切需要进一步的研究。需要解决的挑战包括催化剂颗粒生长对反应和反应器性能的影响。流化床反应器 (FBR) 被认为是 TCD 最可行的装置,但需要全面的实验和建模研究来评估和克服设计和操作挑战。数值建模对于设计、优化和评估 TCD 反应器和工艺至关重要。耦合计算流体动力学-离散元法模型与颗粒内模型(例如 MultiGrain 模型)可以提供 FBR 中 TCD 复杂多尺度现象的更具代表性的视图,使研究人员和工程师能够有效地探索不同的反应器概念和设计。
更新日期:2023-09-30
down
wechat
bug