当前位置: X-MOL 学术Rev. Mod. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atom counting with accelerator mass spectrometry
Reviews of Modern Physics ( IF 44.1 ) Pub Date : 2023-09-28 , DOI: 10.1103/revmodphys.95.035006
Walter Kutschera , A. J. Timothy Jull , Michael Paul , Anton Wallner

Accelerator mass spectrometry (AMS) was born in the late 1970s, when it was realized at nuclear physics laboratories that the accelerator systems can be used as a sensitive mass spectrometer to measure ultralow traces of long-lived radioisotopes. It soon became possible to measure radioisotope-to-stable-isotope ratios in the range from 1012 to 1016 by counting the radioisotope ions “atom by atom” and comparing the count rate with ion currents of stable isotopes (1.6μA=1×1013 singly charged ions/s). It turned out that electrostatic tandem accelerators are best suited for this, and there are now worldwide about 160 AMS facilities based on this principle. This review presents the history, technological developments, and research areas of AMS through the 45 yr since its discovery. Many different fields are touched by AMS measurements, including archaeology, astrophysics, atmospheric science, biology, climatology, cosmic-ray physics, environmental physics, forensic science, glaciology, geophormology, hydrology, ice core research, meteoritics, nuclear physics, oceanography, and particle physics. Since it is virtually impossible to discuss all fields in detail in this review, only specific fields with recent advances are highlighted in detail. For the others, an effort is made to provide relevant references for in-depth studies of the respective fields.

中文翻译:

使用加速器质谱法进行原子计数

加速器质谱 (AMS) 诞生于 20 世纪 70 年代末,当时核物理实验室意识到加速器系统可以用作灵敏的质谱仪来测量超微量的长寿命放射性同位素。很快就可以测量放射性同位素与稳定同位素的比率,范围为10-1210-16通过“逐个原子”对放射性同位素离子进行计数,并将计数率与稳定同位素的离子电流进行比较(1.6μA=1×1013单电荷离子/秒)。事实证明,静电串联加速器最适合此目的,目前全球约有 160 个基于此原理的 AMS 设施。这篇综述介绍了 AMS 自发现以来 45 年来的历史、技术发展和研究领域。 AMS 测量涉及许多不同领域,包括考古学、天体物理学、大气科学、生物学、气候学、宇宙射线物理学、环境物理学、法医学、冰川学、地貌学、水文学、冰芯研究、陨石学、核物理学、海洋学和粒子物理学。由于在这篇综述中几乎不可能详细讨论所有领域,因此仅详细强调具有最新进展的特定领域。力求为其他领域的深入研究提供相关参考。
更新日期:2023-09-28
down
wechat
bug