当前位置: X-MOL 学术Int. J. Rock Mech. Min. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase-field modelling of fluid driven fracture propagation in poroelastic materials considering the impact of inertial flow within the fractures
International Journal of Rock Mechanics and Mining Sciences ( IF 7.0 ) Pub Date : 2023-06-07 , DOI: 10.1016/j.ijrmms.2023.105444
Nima Sarmadi , Mohaddeseh Mousavi Nezhad

This paper presents a computational framework for modelling of fluid pressurised fracture propagation in saturated porous media. The framework rests on the principle of the variational phase-field theory to predict the fracture propagation pathway. The paper sets out the variational formulations and associated weak forms of the partial differential equations describing the pressure-deformation interplays of the fracturing domain, which are solved in the context of the Updated Lagrangian Finite Element method. The proposed formulation reflects the impact of the temporal evolution of the porous media attributes such as porosity, compressibility, permeability, and mechanical stiffness, on the nonlinear hydro-mechanical behaviour of the porous media during the fracture propagation. The inertial effect of the nonlinear flow inside the fracture is resolved using Forchheimer equation. Robustness of the modelling framework is examined by simulating benchmark examples. The effects of poroelastic characteristics of porous media such as the compressibility of solid skeleton and drained bulk modulus on the hydro-mechanical and cracking behaviour of porous rocks and on the total energy of the system are addressed. The nonlinearity of the fluid flow is found to be influential on the length of the leak-off and flow-back regions across the fractured zones, and on the amount of the fluid to be exchanged between the fractures and the porous zone, which is important in the prediction of the productivity of the fracking process in engineering applications.



中文翻译:

考虑裂缝内惯性流影响的多孔弹性材料中流体驱动裂缝扩展的相场建模

本文提出了一个用于模拟饱和多孔介质中流体加压裂缝扩展的计算框架。该框架基于变分相场理论的原理来预测裂缝扩展路径。本文列出了描述压裂域压力-变形相互作用的偏微分方程的变分公式和相关的弱形式,这些方程是在更新的拉格朗日有限元方法的背景下求解的。所提出的公式反映了多孔介质属性(如孔隙率、可压缩性、渗透率和机械刚度)随时间演化对裂缝扩展过程中多孔介质的非线性流体力学行为的影响。使用 Forchheimer 方程求解裂缝内非线性流动的惯性效应。通过模拟基准示例来检查建模框架的稳健性。研究了多孔介质的多孔弹性特性(例如固体骨架的可压缩性和排水体积模量)对多孔岩石的流体力学和开裂行为以及系统总能量的影响。研究发现,流体流动的非线性会影响穿过裂缝区域的漏失和回流区域的长度,以及裂缝和多孔区域之间要交换的流体量,这很重要在工程应用中预测水力压裂过程的生产率。通过模拟基准示例来检查建模框架的稳健性。研究了多孔介质的多孔弹性特性(例如固体骨架的可压缩性和排水体积模量)对多孔岩石的流体力学和开裂行为以及系统总能量的影响。研究发现,流体流动的非线性会影响穿过裂缝区域的漏失和回流区域的长度,以及裂缝和多孔区域之间要交换的流体量,这很重要在工程应用中预测水力压裂过程的生产率。通过模拟基准示例来检查建模框架的稳健性。研究了多孔介质的多孔弹性特性(例如固体骨架的可压缩性和排水体积模量)对多孔岩石的流体力学和开裂行为以及系统总能量的影响。研究发现,流体流动的非线性会影响穿过裂缝区域的漏失和回流区域的长度,以及裂缝和多孔区域之间要交换的流体量,这很重要在工程应用中预测水力压裂过程的生产率。研究了多孔介质的多孔弹性特性(例如固体骨架的可压缩性和排水体积模量)对多孔岩石的流体力学和开裂行为以及系统总能量的影响。研究发现,流体流动的非线性会影响穿过裂缝区域的漏失和回流区域的长度,以及裂缝和多孔区域之间要交换的流体量,这很重要在工程应用中预测水力压裂过程的生产率。研究了多孔介质的多孔弹性特性(例如固体骨架的可压缩性和排水体积模量)对多孔岩石的流体力学和开裂行为以及系统总能量的影响。研究发现,流体流动的非线性会影响穿过裂缝区域的漏失和回流区域的长度,以及裂缝和多孔区域之间要交换的流体量,这很重要在工程应用中预测水力压裂过程的生产率。

更新日期:2023-06-07
down
wechat
bug