当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Virtual Special Issue on “Sustainable Chemocatalysis and Biocatalysis: From Academia to Industry”
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2023-05-31 , DOI: 10.1021/acssuschemeng.3c03120
Sachin Handa 1
Affiliation  

Essential organic molecules are frequently the result of many synthetic procedures. These synthetic methods often involve harmful and endangered metals, expensive ligands, and toxic organic solvents. (1,2) Such agents can adversely affect health, the environment, and natural resource reserves. Therefore, chemists are advancing catalysis by developing technologies that involve biocatalysts, earth-abundant metals, and sustainable reaction media, under the guidance of the 12 Principles of Green Chemistry. (3) It includes reducing the number of steps, avoiding stoichiometric reagents, and using environmentally friendly solvents, such as water, supercritical CO2, ionic and fluorous media, cellulose- and lignin-based solvents, etc. Since future organic synthesis (and, for example, its impact on manufacturing) is an essential component of sustainability, we focused on topics potentially impacting the future manufacturing of organic molecules. The topics include micellar catalysis, organometallic catalysis, biocatalysis, and electrocatalysis. For this Virtual Special Issue (VSI) titled Sustainable Chemocatalysis and Biocatalysis: From Academia to Industry, we invited original contributions that clearly demonstrated the sustainability and merits of these topics. Insofar as the topic of biocatalysis is concerned, Turner, Leys, Aleku, and co-workers describe a biocatalytic system leading to the reductive N-allylation of primary and secondary amines from biomass-derivable cinnamic acids. The two-step, one-pot method includes a carboxylate reduction step using a carboxylic acid reductase followed by reductive amination of the resulting aldehyde. This latter process is catalyzed by a bacterial reductive aminase pIR23 or BacRedAm to access allylic amines, valuable precursors for pharmaceuticals. For more details, see 10.1021/acssuschemeng.2c01180. In the same VSI, also covered is sustainable reaction media, such as water and deep eutectic solvents. If used appropriately, water can be considered the safest, most sustainable, and stable solvent. Micellar catalysis is a major enabler of chemistry in water. Gallou (from Novartis), Handa, and Hazra complied the information on applications of water in amide or peptide bond formation, the most heavily used reaction in industry. Traditional synthetic protocols use undesirable organic solvents which could adversely impact the environment, workers’ safety, and human health. This account discusses the recent development of sustainable amide/peptide bond formation in water, see 10.1021/acssuschemeng.2c00520. Along the same lines, Manske and co-workers from Evonik have showcased amide couplings in water using pivaloyl-mixed anhydrides, see 10.1021/acssuschemeng.2c00642. Krause and co-workers demonstrated sustainable gold catalysis in water, leading to the formation of useful heterocyclic compounds 10.1021/acssuschemeng.2c00713. Notably, gold is hydrophobic, and processes catalyzed by ligated gold are challenging due to the insolubility of catalytic species in water. The authors have elegantly tagged the catalyst to amphiphile PQS to achieve the chemistry in water. Ackermann and co-workers discussed “in water” and “on water” C–H activation. This transformation has a plethora of applications. The authors have covered the literature of “on water” cost-effective, sustainable ruthenium(II)-catalyzed C–H activations. For more details, see 10.1021/acssuschemeng.2c00873. Besides water, Capriati, García-Álvarez, and co-workers have demonstrated using deep eutectic solvents in sustainable synthesis. The authors mainly showcased the work for synthesizing Thenfadil (an antihistamine drug) and its analogs. In this study, the authors have applied sustainability metrics according to the CHEM21 Metrics Toolkit and compared the results with the classical procedure, see 10.1021/acssuschemeng.2c00417. Often, the ligand’s cost in catalysis is ignored by academic researchers. In addition to the metal, the choice of ligand may also contribute to determining the sustainability and greenness of any catalytic protocol. If the ligand enables catalysis at the ppm level, it may add value to the process. Along these lines, Patil and Kumar have showcased the ppm level of gold catalysis enabled by powerful ligands, see 10.1021/acssuschemeng.2c01213. Also covered in this VSI are catalytic transformations using electric current as a reaction promotor or (co)catalyst. Song, Guo, and co-workers showcased their work with electro enzymatic aromatic nitration via an electric field and electro-mediator. In this work, the authors combine the powerful effect of electrochemistry and the enzyme ferredoxin-TxtE to drive nitration of L-tryptophan, see 10.1021/acssuschemeng.2c00523. Huang and co-workers present sustainable decarboxylative carbonylation chemistry mediated by electric current. The transformation involves the electrochemically generated carbocation trapped by water, where the resulting intermediate undergoes oxidation to enable the chemistry to access valuable ketones 10.1021/acssuschemeng.2c01495. Besides the above-mentioned topics, application-oriented organic synthesis involving sustainable catalysis is covered, such as preparing high-purity organic materials for perovskite solar cells. Beverina and co-workers illustrate the cost- and environment-effective synthesis of Spiro-OMeTAD using the toolbox of green chemistry, such as solventless, micellar, and on-water processes. The authors have demonstrated the reduction in cost and E Factor from 5299 to 555. For details, see 10.1021/acssuschemeng.2c00493. Another technology that has contributed significantly to sustainable organic synthesis is flow chemistry. This technology enables chemistry at fast reaction rates, while the solvents used in the protocols can be recovered. In terms of safety, it provides precise control of reaction parameters and improved mass/heat transfer. Kajetanowicz, Wu, Grela, and co-workers have demonstrated ruthenium-catalyzed olefin metathesis in continuous flow to access compounds of pharmaceutical interest, see 10.1021/acssuschemeng.1c06522. In summary, this VSI has focused on topics significant to the synthetic chemistry community and, in particular, sustainable or green chemistry that is a state of continuous evolution. Hopefully, researchers worldwide will continue developing greener, more sustainable processes as part of a better future for all of mankind. Email: sachin.handa@louisville.edu; shy77@missouri.edu. This article references 3 other publications. This article has not yet been cited by other publications. This article references 3 other publications.

中文翻译:

关于“可持续化学催化和生物催化:从学术界到工业界”的虚拟特刊

必需的有机分子通常是许多合成过程的结果。这些合成方法通常涉及有害和濒危金属、昂贵的配体和有毒有机溶剂。(1,2) 此类制剂会对健康、环境和自然资源储备产生不利影响。因此,化学家们在绿色化学 12 条原则的指导下,通过开发涉及生物催化剂、地球上丰富的金属和可持续反应介质的技术来推进催化。(3) 包括减少步骤数,避免化学计量试剂,使用环保溶剂,如水、超临界CO 2、离子和氟介质、基于纤维素和木质素的溶剂等。由于未来的有机合成(例如,它对制造的影响)是可持续发展的重要组成部分,我们专注于可能影响未来有机分子制造的主题. 主题包括胶束催化、有机金属催化、生物催化和电催化。对于本期题为“可持续化学催化和生物催化:从学术界到工业界”的虚拟特刊 (VSI),我们邀请了清晰展示这些主题的可持续性和优点的原创文章。就生物催化主题而言,Turner、Leys、Aleku 及其同事描述了一种导致还原性N-来自生物质衍生肉桂酸的伯胺和仲胺的烯丙基化。两步一锅法包括使用羧酸还原酶的羧酸盐还原步骤,然后对生成的醛进行还原胺化。后一个过程由细菌还原氨酶 pIR23 或 BacRedAm 催化,以获取烯丙基胺,这是有价值的药物前体。有关详细信息,请参阅 10.1021/acssuschemeng.2c01180。在同一个 VSI 中,还包括可持续反应介质,例如水和低共熔溶剂。如果使用得当,水可以被认为是最安全、最可持续和最稳定的溶剂。胶束催化是水中化学的主要推动力。Gallou(来自 Novartis)、Handa 和 Hazra 整理了关于水在酰胺或肽键形成中的应用信息,工业中使用最频繁的反应。传统的合成方案使用不受欢迎的有机溶剂,这些溶剂可能会对环境、工人安全和人类健康产生不利影响。该帐户讨论了水中可持续酰胺/肽键形成的最新发展,请参见 10.1021/acssuschemeng.2c00520。同样,Manske 和 Evonik 的同事展示了使用新戊酰混合酸酐在水中进行的酰胺偶联,参见 10.1021/acssuschemeng.2c00642。Krause 及其同事展示了水中可持续的金催化作用,导致形成有用的杂环化合物 10.1021/acssuschemeng.2c00713。值得注意的是,金是疏水性的,并且由于催化物质在水中的不溶性,连接金催化的过程具有挑战性。作者巧妙地将催化剂标记为两亲物 PQS,以实现水中的化学反应。Ackermann 和同事讨论了“在水中”和“在水上”的 C-H 活化。这种转变有很多应用。作者涵盖了“在水上”具有成本效益、可持续的钌 (II) 催化 C-H 活化的文献。有关详细信息,请参阅 10.1021/acssuschemeng.2c00873。除了水,Capriati、García-Álvarez 及其同事还展示了在可持续合成中使用低共熔溶剂。作者主要展示了合成Thenfadil(一种抗组胺药)及其类似物的工作。在这项研究中,作者根据 CHEM21 指标工具包应用了可持续性指标,并将结果与​​经典程序进行了比较,请参阅 10.1021/acssuschemeng.2c00417。经常,学术研究人员忽略了配体在催化中的成本。除了金属之外,配体的选择也可能有助于确定任何催化方案的可持续性和绿色性。如果配体能够在 ppm 级进行催化,则可能会增加该过程的价值。沿着这些思路,Patil 和 Kumar 展示了由强大的配体实现的 ppm 级金催化,请参见 10.1021/acssuschemeng.2c01213。此 VSI 还涵盖了使用电流作为反应促进剂或(共)催化剂的催化转化。Song、Guo 和同事展示了他们通过电场和电介质进行电酶促芳香硝化的工作。在这项工作中,作者结合了电化学和铁氧还蛋白-TxtE 酶的强大作用来驱动硝化大号-色氨酸,参见 10.1021/acssuschemeng.2c00523。Huang 及其同事介绍了电流介导的可持续脱羧羰基化化学。转化涉及电化学生成的被水捕获的碳正离子,其中生成的中间体经历氧化,使化学能够获得有价值的酮 10.1021/acssuschemeng.2c01495。除了上述主题外,还涵盖了涉及可持续催化的面向应用的有机合成,例如为钙钛矿太阳能电池制备高纯度有机材料。Beverina 及其同事使用绿色化学工具箱(例如无溶剂、胶束和水上工艺)说明了 Spiro-OMeTAD 的成本效益和环境效益合成。作者已经证明成本和 E 因子从 5299 降低到 555。有关详细信息,请参阅 10.1021/acssuschemeng.2c00493。另一项对可持续有机合成做出重大贡献的技术是流动化学。该技术能够以快速反应速率进行化学反应,同时可以回收方案中使用的溶剂。在安全方面,它提供了对反应参数的精确控制和改进的传质/传热。Kajetanowicz、Wu、Grela 和同事已经证明了在连续流动中进行钌催化的烯烃复分解以获得具有药用价值的化合物,请参见 10.1021/acssuschemeng.1c06522。总而言之,本 VSI 专注于对合成化学界具有重要意义的主题,尤其是处于持续发展状态的可持续或绿色化学。希望全世界的研究人员将继续开发更环保、更可持续的进程,作为全人类更美好未来的一部分。电子邮件:sachin.handa@louisville.edu;害羞的77@missouri.edu。本文引用了其他 3 篇出版物。这篇文章尚未被其他出版物引用。本文引用了其他 3 篇出版物。
更新日期:2023-05-31
down
wechat
bug