当前位置: X-MOL 学术Commun. Number Theory Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On a class of non-simply connected Calabi-Yau $3$-folds with positive Euler characteristic
Communications in Number Theory and Physics ( IF 1.9 ) Pub Date : 2022-02-01 , DOI: 10.4310/cntp.2022.v16.n1.a-karayayla
Tolga Karayayla 1
Affiliation  

In this work we obtain a class of non-simply connected Calabi–Yau $3$ folds with positive Euler characteristic as the quotient of projective small resolutions of singular Schoen $3$ folds under the free action of finite groups. A Schoen $3$ fold is a fiber product $X = B_1 \times {}_{\mathbb{P}^1} \: B_2$ of two relatively minimal rational elliptic surfaces with section $\beta_i : B_i \to \mathbb{P}^1 , i = {1, 2}$. Schoen has shown that if $X$ is smooth, then $X$ is a simply connected Calabi–Yau $3$ fold, and if the only singularities of $X$ are on $\mathbb{I}_r \times \mathbb{I}_s$ type fibers with $r \gt 1$ and $s \gt 1$, then there exists a projective small resolution $\hat{X}$ of $X$, and $\hat{X}$ is a simply connected Calabi–Yau $3$ fold [7]. If $G$ is a finite group which acts freely on a smooth Schoen $3$ fold $X$, then the quotient $X/G$ is a non-simply connected Calabi–Yau $3$ fold with fundamental group $G$, and all such group actions have been classified by Bouchard and Donagi [2]. Bouchard and Donagi have proposed the open problem of classifying all finite groups $G$ which act freely on projective small resolutions $\hat{X}$ of singular Schoen $3$ folds $X$. In this case the quotient $\hat{X}/G$ is again a Calabi–Yau $3$ fold with fundamental group $G$. In this paper we first classify the finite groups $G$ which act freely on singular Schoen $3$ folds $X$ where the only singularities of $X$ are on $\mathbb{I}_r \times \mathbb{I}_s$ type fibers with $r \gt 1$ and $s \gt 1$ and the elements of $G$ act on $X$ as an automorphism $\tau_1 \times \tau_2$ where each $\tau_i$ is an automorphism of the elliptic surface $B_i$. A projective small resolution $\hat{X}$ of $X$ is obtained by blowing up some components of the $\mathbb{I}_r \times \mathbb{I}_s$ fibers on $X$. We determine which of the free actions on the singular $3$‑fold $X$ lift to free actions on the Calabi–Yau $3$ fold $\hat{X}$. For the non-simply connected Calabi–Yau $3$ folds $\hat{X}/G$ obtained with this construction, the distinct fundamental groups are $\mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_2$, and $\mathbb{Z}_n$ for $n = 6, 5, 4, 3, 2$. These are the same groups obtained by Bouchard and Donagi by working on free actions on smooth Schoen $3$ folds. While the Euler characteristic of each $X/G$ obtained by Bouchard and Donagi is $0$, the Euler characteristics of all non-simply connected Calabi–Yau $3$ folds $\hat{X}/G$ we obtain in this paper are positive and they range in: $64$, $54$, $48$, $40$ and $2k$ for $2 \leq k \leq 18$. The given Euler characteristic values do not all occur for each of the listed fundamental groups. The classification of finite groups which act freely on singular Schoen $3$ folds $X$ whose singularities are on $\mathbb{I}_r \times \mathbb{I}_s$ type fibers with $r \gt 1$ and $s \gt 1$, the classification of such group actions which lift to free actions on projective small resolutions $\hat{X}$ of $X$, and the fundamental groups and Euler characteristic values of the non-simply connected Calabi–Yau $3$ folds $\hat{X }/G$ are displayed in several tables. The study of the group actions on $X$ which induce a non-trivial action on the base curve $\mathbb{P}^1$ and which induce a trivial action on $\mathbb{P}^1$ is carried out separately.

中文翻译:

在一类具有正欧拉特征的非单连通 Calabi-Yau $3$-folds

在这项工作中,我们获得了一类具有正欧拉特性的非单连通 Calabi-Yau $3$ 折叠,作为有限群自由作用下奇异 Schoen $3$ 折叠的投影小分辨率的商。Schoen $3$ 折是两个相对最小有理椭圆曲面的截面 $\beta_i 的纤维乘积 $X = B_1 \times {}_{\mathbb{P}^1} \: B_2$ : B_i \to \mathbb{ P}^1 , i = {1, 2}$。Schoen 证明如果 $X$ 是光滑的,那么 $X$ 是一个简单连通的 Calabi–Yau $3$ 折,并且如果 $X$ 的唯一奇点在 $\mathbb{I}_r \times \mathbb{I }_s$ 型纤维,$r \gt 1$ 和 $s \gt 1$,则存在 $X$ 的射影小分辨率 $\hat{X}$,$\hat{X}$ 是一个简单的连接 Calabi–Yau $3$ fold [ 7]。如果 $G$ 是一个自由作用于光滑 Schoen $3$ fold $X$ 的有限群,那么商 $X/G$ 是与基本群 $G$ 的非单连通 Calabi-Yau $3$ fold,并且Bouchard 和 Donagi 对所有此类集体行动进行了分类 [ 2]。Bouchard 和 Donagi 提出了分类所有有限群 $G$ 的开放问题,这些有限群自由地作用于奇异 Schoen $3$ 折叠 $X$ 的射影小分辨率 $\hat{X}$。在这种情况下,商 $\hat{X}/G$ 又是与基本组 $G$ 的 Calabi–Yau $3$ 折叠。在本文中,我们首先对自由作用于奇异 Schoen 的有限群 $G$ 进行分类 $3$ 折叠 $X$ 其中 $X$ 的唯一奇异点在 $\mathbb{I}_r \times \mathbb{I}_s$具有 $r \gt 1$ 和 $s \gt 1$ 的类型纤维和 $G$ 的元素作为自同构作用于 $X$ $\tau_1 \times \tau_2$ 其中每个 $\tau_i$ 是椭圆面$B_i$。通过炸毁 $X$ 上的 $\mathbb{I}_r \times \mathbb{I}_s$ 纤维的一些分量,可以获得 $X$ 的投影小分辨率 $\hat{X}$。我们确定奇异 $3$‑fold $X$ 提升上的哪些自由动作与 Calabi–Yau $3$ fold $\hat{X}$ 上的自由动作。对于通过这种构造获得的非单连通 Calabi–Yau $3$ 折叠 $\hat{X}/G$,不同的基本群是 $\mathbb{Z}_3\times \mathbb{Z}_3$, $\ mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_2$, and $\mathbb{Z}_n$ for $n = 6, 5, 4 , 3, 2 美元。这些是 Bouchard 和 Donagi 通过在平滑的 Schoen $3$ 折叠上进行自由操作而获得的相同组。虽然 Bouchard 和 Donagi 得到的每个 $X/G$ 的欧拉特性都是 $0$,但我们在本文中得到的所有非单连通 Calabi–Yau $3$ fold $\hat{X}/G$ 的欧拉特性是正数,它们的范围为:$64$、$54$、$48$、$40$ 和 $2k$ 对应 $2 \leq k \leq 18$。给定的欧拉特征值并非都出现在每个列出的基本组中。自由作用于奇异 Schoen $3$ 的有限群的分类折叠 $X$,其奇异性在 $\mathbb{I}_r \times \mathbb{I}_s$ 类型纤维上,$r \gt 1$ 和 $s \ gt 1$,在 $X$ 的射影小分辨率 $\hat{X}$ 上提升为自由动作的此类群动作的分类,以及非单连通 Calabi-Yau 的基本群和欧拉特征值 $3$ folds $\hat{X }/G$ 显示在多个表格中。对 $X$ 上的群动作的研究分别进行. 自由作用于奇异 Schoen $3$ 的有限群的分类折叠 $X$,其奇异性在 $\mathbb{I}_r \times \mathbb{I}_s$ 类型纤维上,$r \gt 1$ 和 $s \ gt 1$,在 $X$ 的射影小分辨率 $\hat{X}$ 上提升为自由动作的此类群动作的分类,以及非单连通 Calabi-Yau 的基本群和欧拉特征值 $3$ folds $\hat{X }/G$ 显示在多个表格中。对 $X$ 上的群动作的研究分别进行. 自由作用于奇异 Schoen $3$ 的有限群的分类折叠 $X$,其奇异性在 $\mathbb{I}_r \times \mathbb{I}_s$ 类型纤维上,$r \gt 1$ 和 $s \ gt 1$,在 $X$ 的射影小分辨率 $\hat{X}$ 上提升为自由动作的此类群动作的分类,以及非单连通 Calabi-Yau 的基本群和欧拉特征值 $3$ folds $\hat{X }/G$ 显示在多个表格中。对 $X$ 上的群动作的研究分别进行. 此类群动作的分类,这些群动作在 $X$ 的射影小分辨率 $\hat{X}$ 上提升为自由动作,以及非单连通 Calabi-Yau 的基本群和欧拉特征值 $3$ 折叠 $\hat {X }/G$ 显示在多个表格中。对 $X$ 上的群动作的研究分别进行. 此类群动作的分类,这些群动作在 $X$ 的射影小分辨率 $\hat{X}$ 上提升为自由动作,以及非单连通 Calabi-Yau 的基本群和欧拉特征值 $3$ 折叠 $\hat {X }/G$ 显示在多个表格中。对 $X$ 上的群动作的研究分别进行.
更新日期:2022-02-02
down
wechat
bug