当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon
Science ( IF 56.9 ) Pub Date : 2017-11-16 , DOI: 10.1126/science.aao5023
D. Chester Upham 1 , Vishal Agarwal 1, 2 , Alexander Khechfe 3 , Zachary R. Snodgrass 3 , Michael J. Gordon 3 , Horia Metiu 1 , Eric W. McFarland 3
Affiliation  

Hydrogen from methane in molten metal The hydrogen used in making ammonia and other industrial reactions is produced mainly through steam reformation of methane over nickel catalysts. This high-temperature process also releases carbon dioxide, a greenhouse gas. Upham et al. used nickel dissolved in molten bismuth to pyrolyze methane to release hydrogen and form carbon, which floats to the surface of the melt, where it can be removed. Carbon formation on steam-reforming catalysts is usually a deactivating side reaction, but in the new process, the carbon can be stored or incorporated into composite materials. Science, this issue p. 917 Molten metal alloys catalyze methane pyrolysis to form hydrogen and removable surface carbon. Metals that are active catalysts for methane (Ni, Pt, Pd), when dissolved in inactive low–melting temperature metals (In, Ga, Sn, Pb), produce stable molten metal alloy catalysts for pyrolysis of methane into hydrogen and carbon. All solid catalysts previously used for this reaction have been deactivated by carbon deposition. In the molten alloy system, the insoluble carbon floats to the surface where it can be skimmed off. A 27% Ni–73% Bi alloy achieved 95% methane conversion at 1065°C in a 1.1-meter bubble column and produced pure hydrogen without CO2 or other by-products. Calculations show that the active metals in the molten alloys are atomically dispersed and negatively charged. There is a correlation between the amount of charge on the atoms and their catalytic activity.

中文翻译:

用于将甲烷直接转化为氢气和可分离碳的催化熔融金属

来自熔融金属中甲烷的氢气 用于制造氨和其他工业反应的氢气主要是通过在镍催化剂上对甲烷进行蒸汽重整来生产的。这种高温过程还会释放二氧化碳,这是一种温室气体。Upham 等人。使用溶解在熔融铋中的镍来热解甲烷以释放氢并形成碳,碳漂浮到熔体表面,在那里可以将其除去。蒸汽重整催化剂上的碳形成通常是失活的副反应,但在新工艺中,碳可以储存或掺入复合材料中。科学,这个问题 p。917 熔融金属合金催化甲烷热解以形成氢和可去除的表面碳。当溶解在惰性低熔点金属(In、Pd)中时,金属是甲烷(Ni、Pt、Pd)的活性催化剂 Ga、Sn、Pb),产生稳定的熔融金属合金催化剂,用于将甲烷热解为氢和碳。以前用于该反应的所有固体催化剂都已通过碳沉积而失活。在熔融合金系统中,不溶性碳浮到表面,可以被撇去。27% Ni–73% Bi 合金在 1.1 米泡罩塔中在 1065°C 下实现了 95% 的甲烷转化率,并生产出不含 CO2 或其他副产物的纯氢。计算表明,熔融合金中的活性金属原子分散并带负电。原子上的电荷量与其催化活性之间存在相关性。以前用于该反应的所有固体催化剂都已通过碳沉积而失活。在熔融合金系统中,不溶性碳浮到表面,可以被撇去。27% Ni–73% Bi 合金在 1.1 米泡罩塔中在 1065°C 下实现了 95% 的甲烷转化率,并生产出不含 CO2 或其他副产物的纯氢。计算表明,熔融合金中的活性金属原子分散并带负电。原子上的电荷量与其催化活性之间存在相关性。以前用于该反应的所有固体催化剂都已通过碳沉积而失活。在熔融合金系统中,不溶性碳浮到表面,可以被撇去。27% Ni–73% Bi 合金在 1.1 米泡罩塔中在 1065°C 下实现了 95% 的甲烷转化率,并生产出不含 CO2 或其他副产物的纯氢。计算表明,熔融合金中的活性金属原子分散并带负电。原子上的电荷量与其催化活性之间存在相关性。计算表明,熔融合金中的活性金属原子分散并带负电。原子上的电荷量与其催化活性之间存在相关性。计算表明,熔融合金中的活性金属原子分散并带负电。原子上的电荷量与其催化活性之间存在相关性。
更新日期:2017-11-16
down
wechat
bug