当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique
Journal of Power Sources ( IF 9.2 ) Pub Date : 2017-11-14 , DOI: 10.1016/j.jpowsour.2017.11.016
Michael Gockeln , Suman Pokhrel , Florian Meierhofer , Jens Glenneberg , Marco Schowalter , Andreas Rosenauer , Udo Fritsching , Matthias Busse , Lutz Mädler , Robert Kun

Reduction of lithium-ion battery (LIB) production costs is inevitable to make the use of LIB technology more viable for applications such as electric vehicles or stationary storage. To meet the requirements in today's LIB cost efficiency, our current research focuses on an alternative electrode fabrication method, characterized by a combination of double flame spray pyrolysis and lamination technique (DFSP/lamination). In-situ carbon coated nano-Li4Ti5O12 (LTO/C) was synthesized using versatile DFSP. The as-prepared composite powder was then directly laminated onto a conductive substrate avoiding the use of any solvent or binder for electrode preparation. The influence of lamination pressures on the microstructure and electrochemical performance of the electrodes was also investigated. Enhancements in intrinsic electrical conductivity were found for higher lamination pressures. Capacity retention of highest pressurized DFSP/lamination-prepared electrode was 87.4% after 200 dis-/charge cycles at 1C (vs. Li). In addition, LTO/C material prepared from the double flame spray pyrolysis was also used for fabricating electrodes via doctor blading technique. Laminated electrodes obtained higher specific discharge capacities compared to calendered and non-calendered blade-casted electrodes due to superior microstructural properties. Such a fast and industrially compelling integrative DFSP/lamination tool could be a prosperous, next generation technology for low-cost LIB electrode fabrication.



中文翻译:

Li 4 Ti 5 O 12 / C锂离子电池电极的复合双火焰喷雾热解和压力基层压技术的制备及性能

降低锂离子电池(LIB)的生产成本是不可避免的,以使LIB技术在电动汽车或固定存储等应用中更可行。为了满足当今LIB成本效率的要求,我们当前的研究重点是另一种电极制造方法,其特征在于结合了双火焰喷雾热解和层压技术(DFSP /层压)。原位碳包覆纳米Li 4 Ti 5 O 12(LTO / C)是使用通用DFSP合成的。然后将所制备的复合粉末直接层压到导电基材上,从而避免使用任何溶剂或粘合剂进行电极制备。还研究了层压压力对电极的微观结构和电化学性能的影响。对于较高的层压压力,发现固有电导率提高。在1C下进行200次放电/充电后,最高加压DFSP /层压制备电极的容量保持率为87.4%(相对于Li)。另外,由双火焰喷雾热解制备的LTO / C材料也被用于通过电极制造电极医生叶片技术。与压延和未压延的叶片浇铸电极相比,层压电极由于具有优异的微观结构特性,因此具有更高的比放电容量。这种快速且工业上引人注目的集成式DFSP /层压工具可能是用于低成本LIB电极制造的繁荣的下一代技术。

更新日期:2017-11-14
down
wechat
bug