当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Corrosion resistance of Fe 77 Mo 5 P 9 C 7.5 B 1.5 in-situ metallic glass matrix composites
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2018-03-01 , DOI: 10.1016/j.jallcom.2017.11.138
Arman Zarebidaki , Amir Seifoddini , Taher Rabizadeh

Abstract A novel in-situ Fe-based metallic glass matrix composite with a composition of Fe77Mo5P9C7.5B1.5 was developed by injection casting. Scanning electron microscopy (SEM) and X-Ray diffraction (XRD) confirmed the presence of α-Fe dendrites as a secondary phase across the glassy matrix. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods were utilized to study the corrosion behavior of Fe77Mo5P9C7.5B1.5 in deaerated 1 M HCl solution and to compare it with that obtained for AISI Type 301 stainless steel as a Fe-base crystalline alloy. The electrochemical characterizations showed the lower corrosion resistance of the synthesized Fe-MGMC which was due to the galvanic cells formed between α-Fe dendrites and the glassy matrix. Energy dispersive spectroscopy (EDS) analysis of the corroded Fe-MGMC revealed the role of B and C in forming a passive layer mirrored by a stable vertical line in the anodic part of the corresponding potentiodynamic polarization curve. Although, the stainless steel sample yielded a lower corrosion rate and a higher charge transfer resistance, a passive-transpassive transition was observed in its anodic polarization curve confirming the lower stability of the passive film formed on the specimen. The preferential dissolution of α-Fe dendrites and formation of micro-sized pits were the characteristic corroded surface morphology of Fe77Mo5P9C7.5B1.5 and AISI Type 301 stainless steel, respectively.

中文翻译:

Fe 77 Mo 5 P 9 C 7.5 B 1.5 原位金属玻璃基复合材料的耐腐蚀性能

摘要 采用注射铸造法研制了一种新型原位铁基金属玻璃基复合材料,其成分为Fe77Mo5P9C7.5B1.5。扫描电子显微镜 (SEM) 和 X 射线衍射 (XRD) 证实了 α-Fe 枝晶作为玻璃基质中的第二相的存在。利用动电位极化和电化学阻抗谱 (EIS) 方法研究了 Fe77Mo5P9C7.5B1.5 在脱气 1 M HCl 溶液中的腐蚀行为,并将其与作为铁基结晶合金的 AISI 301 型不锈钢获得的腐蚀行为进行了比较。电化学表征表明合成的 Fe-MGMC 的耐腐蚀性较低,这是由于 α-Fe 枝晶和玻璃基体之间形成的原电池。腐蚀的 Fe-MGMC 的能量色散谱 (EDS) 分析揭示了 B 和 C 在形成由相应动电位极化曲线的阳极部分中的稳定垂直线镜像的钝化层中的作用。尽管不锈钢样品产生较低的腐蚀速率和较高的电荷转移电阻,但在其阳极极化曲线中观察到被动-透射转变,证实了在样品上形成的钝化膜的稳定性较低。α-Fe 枝晶的优先溶解和微型凹坑的形成分别是 Fe77Mo5P9C7.5B1.5 和 AISI 301 型不锈钢的特征腐蚀表面形态。尽管不锈钢样品产生较低的腐蚀速率和较高的电荷转移电阻,但在其阳极极化曲线中观察到被动-透射转变,证实了在样品上形成的钝化膜的稳定性较低。α-Fe 枝晶的优先溶解和微型凹坑的形成分别是 Fe77Mo5P9C7.5B1.5 和 AISI 301 型不锈钢的特征腐蚀表面形态。尽管不锈钢样品产生较低的腐蚀速率和较高的电荷转移电阻,但在其阳极极化曲线中观察到被动-透射转变,证实了在样品上形成的钝化膜的稳定性较低。α-Fe 枝晶的优先溶解和微型凹坑的形成分别是 Fe77Mo5P9C7.5B1.5 和 AISI 301 型不锈钢的特征腐蚀表面形态。
更新日期:2018-03-01
down
wechat
bug