当前位置: X-MOL 学术Mater. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multifunctional second barrier layers for lithium–sulfur batteries
Materials Chemistry Frontiers ( IF 6.0 ) Pub Date : 2017-11-14 00:00:00 , DOI: 10.1039/c7qm00405b
Wei Fan 1, 2, 3, 4, 5 , Longsheng Zhang 5, 6, 7, 8, 9 , Tianxi Liu 1, 2, 3, 4, 5
Affiliation  

Lithium–sulfur (Li–S) batteries have become one of the most promising candidates for next-generation energy storage devices due to their high theoretical energy density and cost effectiveness. However, the detrimental shuttle effect of lithium polysulfides during cycling and their deposition on the lithium anode have severely restricted the practical applications of Li–S batteries. Various efforts have been explored in the past few years to hinder the undesirable diffusion and shuttling of lithium polysulfides. The introduction of a second barrier layer has been demonstrated to be a successful approach to restrict the migration of polysulfides and fabricate high-performance Li–S batteries with enhanced cycling and rate performance. A comprehensive review of recent efforts regarding second barrier layers applied in Li–S batteries, either being an individual interlayer, a thin coating on the separator, or an integrated structure, is presented and discussed. Individual interlayers made by porous carbon, carbon/metal compounds and conductive polymers between the separator and the sulfur cathode as well as functionalized polyolefin and non-polyolefin based separators have been proposed. In addition, some advanced examples of interlayers with novel sandwiched/integrated configurations for Li–S batteries, which can not only enable a suppressed shuttle effect but also achieve enhanced energy density, are also reviewed.

中文翻译:

锂硫电池的多功能第二阻隔层

锂硫(Li–S)电池由于其较高的理论能量密度和成本效益,已成为下一代储能设备最有希望的候选者之一。但是,多硫化锂在循环过程中的有害穿梭效应及其在锂阳极上的沉积严重限制了Li-S电池的实际应用。在过去的几年中,已经进行了各种努力来阻止多硫化锂的不期望的扩散和穿梭。已证明引入第二阻隔层是限制多硫化物迁移并制造具有增强的循环和倍率性能的高性能Li-S电池的成功方法。全面回顾了有关在Li-S电池中应用的第二势垒层的最新工作,可以是单独的中间层,也可以是隔板上的薄涂层,也可以是整体结构。已经提出了在隔板和硫阴极之间由多孔碳,碳/金属化合物和导电聚合物制成的各个中间层,以及功能化的基于聚烯烃和非聚烯烃的隔板。此外,还回顾了一些用于Li-S电池的具有新型夹层/集成结构的中间层的高级示例,这些中间层不仅可以实现抑制穿梭效应,而且还可以提高能量密度。已经提出了在隔板和硫阴极之间的碳/金属化合物和导电聚合物以及功能化的聚烯烃和非聚烯烃基隔板。此外,还回顾了一些用于Li-S电池的具有新型夹层/集成结构的中间层的高级示例,这些中间层不仅可以实现抑制穿梭效应,而且还可以提高能量密度。已经提出了在隔板和硫阴极之间的碳/金属化合物和导电聚合物以及功能化的聚烯烃和非聚烯烃基隔板。此外,还回顾了一些用于Li-S电池的具有新型夹层/集成结构的中间层的高级示例,这些中间层不仅可以实现抑制穿梭效应,而且还可以提高能量密度。
更新日期:2017-11-14
down
wechat
bug