当前位置: X-MOL 学术Sci. Total Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving the hydrocarbon production via co-pyrolysis of bagasse with bio-plastic and dual-catalysts layout
Science of the Total Environment ( IF 8.2 ) Pub Date : 2017-11-09 , DOI: 10.1016/j.scitotenv.2017.11.045
Huiyan Zhang , Peter Keliona Wani Likun , Rui Xiao

Catalytic fast pyrolysis (CFP) of bagasse and bio-plastic (chicken feather keratin) and their mixtures were conducted to produce aromatic hydrocarbons over a HZSM-5, USY, and dual-catalysts layout. The effects of temperature, co-feeding ratios, feed-to-catalyst ratios and dual catalysts on hydrocarbon yields and selectivities were investigated. The results show a general improvement in the aromatic hydrocarbons yields in all cases compared to non-catalytic and pure biomass pyrolysis. The aromatic hydrocarbons increased by 10 fold with the increase of temperature from 400 °C to 700 °C. The aromatic yields increased 1.5 times at co-feeding, 2.0 greater at feed/HZSM-5 ratio of 1:6, 1.2 times at feed/USY ratio of 1:16, and 2.66 times at USY/HZSM-5 scenario. The selectivities towards benzene increased, at higher co-feeding ratios, while that of toluene shows an opposite trend. Xylenes selectivities were less sensitive to the changes of co-feeding ratios. In contrast, the USY catalyst only produced little amount of toluene and xylenes. The dual catalyst design (USY/HZSM-5) resulted in the highest aromatic yields, than other catalyst design scenarios. The pyrolysis temperature is a significant parameter for hydrocarbon production. Co-feeding bagasse and bio-plastic enhanced biomass conversion to aromatic compounds. For any type of zeolite catalyst, there was an optimum feed-to-catalyst ratio that generated maximum hydrocarbons. Dual catalyst layout shows a new opportunity for efficient conversion of biomass materials into hydrocarbons.



中文翻译:

通过生物塑料和双催化剂布局的甘蔗渣共热解提高烃产量

进行了蔗渣和生物塑料(鸡毛角蛋白)及其混合物的催化快速热解(CFP),以在HZSM-5,USY和双催化剂布局上生产芳烃。研究了温度,共进料比,进料-催化剂比和双重催化剂对烃产率和选择性的影响。结果表明,与非催化和纯生物质热解法相比,在所有情况下,芳烃的收率都有总体提高。随着温度从400°C到700°C的增加,芳烃的含量增加了10倍。共进料时芳烃收率提高了1.5倍,进料/ HZSM-5比为1:6时提高了2.0倍,进料/ USY比为1:16时提高了1.2倍,在USY / HZSM-5情况下提高了2.66倍。在较高的共同进料比下,对苯的选择性增加,而甲苯则呈现相反的趋势。二甲苯的选择性对共进料比的变化不那么敏感。相反,USY催化剂仅产生少量的甲苯和二甲苯。与其他催化剂设计方案相比,双催化剂设计(USY / HZSM-5)产生了最高的芳烃收率。热解温度是烃生产的重要参数。一起喂食蔗渣和生物塑料可提高生物量向芳族化合物的转化率。对于任何类型的沸石催化剂,都存在产生最大碳氢化合物的最佳进料比。双催化剂布局显示了将生物质材料有效转化为碳氢化合物的新机会。USY催化剂仅产生少量的甲苯和二甲苯。与其他催化剂设计方案相比,双催化剂设计(USY / HZSM-5)产生了最高的芳烃收率。热解温度是烃生产的重要参数。一起喂食蔗渣和生物塑料可提高生物量向芳族化合物的转化率。对于任何类型的沸石催化剂,都存在产生最大碳氢化合物的最佳进料比。双催化剂布局显示了将生物质材料有效转化为碳氢化合物的新机会。USY催化剂仅产生少量的甲苯和二甲苯。与其他催化剂设计方案相比,双催化剂设计(USY / HZSM-5)产生了最高的芳烃收率。热解温度是烃生产的重要参数。一起喂食蔗渣和生物塑料可提高生物量向芳族化合物的转化率。对于任何类型的沸石催化剂,都存在产生最大碳氢化合物的最佳进料比。双催化剂布局显示了将生物质材料有效转化为碳氢化合物的新机会。一起喂食蔗渣和生物塑料可提高生物量向芳族化合物的转化率。对于任何类型的沸石催化剂,都存在产生最大碳氢化合物的最佳进料比。双催化剂布局显示了将生物质材料有效转化为碳氢化合物的新机会。一起喂食蔗渣和生物塑料可提高生物量向芳族化合物的转化率。对于任何类型的沸石催化剂,都存在产生最大碳氢化合物的最佳进料比。双催化剂布局显示了将生物质材料有效转化为碳氢化合物的新机会。

更新日期:2017-11-11
down
wechat
bug