当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis of ultrathin platinum nanoplates for enhanced oxygen reduction activity
Chemical Science ( IF 7.6 ) Pub Date : 2017-10-30 00:00:00 , DOI: 10.1039/c7sc02997g
Hongpo Liu 1, 2, 3, 4, 5 , Ping Zhong 1, 2, 3, 4, 5 , Kai Liu 1, 2, 3, 4, 5 , Lu Han 5, 6, 7, 8 , Haoquan Zheng 4, 5, 6, 9 , Yadong Yin 10, 11, 12, 13 , Chuanbo Gao 1, 2, 3, 4, 5
Affiliation  

Ultrathin Pt nanostructures exposing controlled crystal facets are highly desirable for their superior activity and cost-effectiveness in the electrocatalytic oxygen reduction reaction (ORR), and they are conventionally synthesized by epitaxial growth of Pt on a limited range of templates, such as Pd nanocrystals, resulting in a high cost and less structural diversity of the ultrathin Pt nanostructures. To solve this problem, we demonstrate that ultrathin Pt nanostructures can be synthesized by templating conveniently available Ag nanocrystals without involving galvanic replacement, which enables a much-reduced cost and controllable new morphologies, such as ultrathin Pt nanoplates that expose the {111} facets. The resulting ultrathin Pt nanoplates are ∼1–2 nm in thickness, which show an ∼22-fold increase in specific activity (5.3 mA cm−2), an ∼9.5-fold increase in mass activity (1.62 A mg−1) and significantly enhanced catalytic stability in the ORR, compared with the commercial Pt/C catalyst. We believe this strategy opens a door to a highly extendable family of ultrathin noble metal nanostructures, thus promising excellent activity and stability in a broad range of catalytic applications.

中文翻译:

合成超薄铂纳米板增强氧还原活性

暴露可控晶面的超薄Pt纳米结构因其在电催化氧还原反应(ORR)中的出色活性和成本效益而非常受人们欢迎,并且通常是通过在有限范围的模板(例如Pd纳米晶体)上外延生长Pt合成的,导致高成本和极薄的Pt纳米结构的结构多样性较少。为了解决这个问题,我们证明了超薄的Pt纳米结构可以通过模板化方便地获得的Ag纳米晶体来合成,而无需进行电流置换,这可以大大降低成本并控制新的形貌,例如暴露{111}面的超薄Pt纳米板。所得超薄Pt纳米板的厚度约为1-2 nm,比活性(5.3 mA cm-2),与市售Pt / C催化剂相比,质量活性(1.62 A mg -1)增加了9.5倍,并且显着提高了ORR的催化稳定性。我们相信,这种策略为超薄贵金属纳米结构的高度可扩展性家族打开了一扇门,因此有望在广泛的催化应用中表现出出色的活性和稳定性。
更新日期:2017-11-08
down
wechat
bug