当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Confined methane–water interfacial layers and thickness measurements using in situ Raman spectroscopy
Lab on a Chip ( IF 6.1 ) Pub Date : 2017-10-12 00:00:00 , DOI: 10.1039/c7lc00660h
Bruno Pinho 1, 2, 3, 4 , Yukun Liu 1, 2, 3, 4 , Benjamin Rizkin 1, 2, 3, 4 , Ryan L. Hartman 1, 2, 3, 4
Affiliation  

Gas–liquid interfaces broadly impact our planet, yet confined interfaces behave differently than unconfined ones. We report the role of tangential fluid motion in confined methane–water interfaces. The interfaces are created using microfluidics and investigated by in situ 1D, 2D and 3D Raman spectroscopy. The apparent CH4 and H2O concentrations are reported for Reynolds numbers (Re), ranging from 0.17 to 8.55. Remarkably, the interfaces are comprised of distinct layers of thicknesses varying from 23 to 57 μm. We found that rarefaction, mixture, thin film, and shockwave layers together form the interfaces. The results indicate that the mixture layer thickness (δ) increases with Re (δ ∝ Re), and traditional transport theory for unconfined interfaces does not explain the confined interfaces. A comparison of our results with thin film theory of air–water interfaces (from mass transfer experiments in capillary microfluidics) supports that the hydrophobicity of CH4 could decrease the strength of water–water interactions, resulting in larger interfacial thicknesses. Our findings help explain molecular transport in confined gas–liquid interfaces, which are common in a broad range of societal applications.

中文翻译:

受限的甲烷-水界面层和厚度的原位拉曼光谱测量

气液界面广泛地影响着我们的星球,但受限界​​面的行为与未受限界面的行为不同。我们报告了切向流体运动在受限的甲烷-水界面中的作用。这些界面是使用微流体技术创建的,并通过原位1D,2D和3D拉曼光谱进行了研究。据报道,雷诺数(Re)的表观CH 4和H 2 O浓度范围为0.17至8.55。显着地,界面由厚度从23至57μm变化的不同层组成。我们发现稀疏层,混合层,薄膜层和冲击波层共同形成了界面。结果表明,混合层厚度(δ)随着Re(δ)的增加而增加。关于约束接口的传统传输理论并不能解释约束接口。将我们的结果与空气-水界面的薄膜理论(来自毛细管微流体中的传质实验)的比较结果表明,CH 4的疏水性可能会降低水-水相互作用的强度,从而导致较大的界面厚度。我们的发现有助于解释在受限的气液界面中的分子运输,这在广泛的社会应用中很常见。
更新日期:2017-11-07
down
wechat
bug