当前位置: X-MOL 学术Cell Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value.
Cell Research ( IF 28.1 ) Pub Date : 2017-Nov-01 , DOI: 10.1038/cr.2017.124
Changsong Zou , Aojun Chen , Lihong Xiao , Heike M Muller , Peter Ache , Georg Haberer , Meiling Zhang , Wei Jia , Ping Deng , Ru Huang , Daniel Lang , Feng Li , Dongliang Zhan , Xiangyun Wu , Hui Zhang , Jennifer Bohm , Renyi Liu , Sergey Shabala , Rainer Hedrich , Jian-Kang Zhu , Heng Zhang

Chenopodium quinoa is a halophytic pseudocereal crop that is being cultivated in an ever-growing number of countries. Because quinoa is highly resistant to multiple abiotic stresses and its seed has a better nutritional value than any other major cereals, it is regarded as a future crop to ensure global food security. We generated a high-quality genome draft using an inbred line of the quinoa cultivar Real. The quinoa genome experienced one recent genome duplication about 4.3 million years ago, likely reflecting the genome fusion of two Chenopodium parents, in addition to the γ paleohexaploidization reported for most eudicots. The genome is highly repetitive (64.5% repeat content) and contains 54 438 protein-coding genes and 192 microRNA genes, with more than 99.3% having orthologous genes from glycophylic species. Stress tolerance in quinoa is associated with the expansion of genes involved in ion and nutrient transport, ABA homeostasis and signaling, and enhanced basal-level ABA responses. Epidermal salt bladder cells exhibit similar characteristics as trichomes, with a significantly higher expression of genes related to energy import and ABA biosynthesis compared with the leaf lamina. The quinoa genome sequence provides insights into its exceptional nutritional value and the evolution of halophytes, enabling the identification of genes involved in salinity tolerance, and providing the basis for molecular breeding in quinoa.

中文翻译:

奎奴亚藜的高质量基因组装配提供了对基于盐囊的盐度耐受性的分子基础以及卓越的营养价值的见解。

藜藜藜(Chenopodium quinoa)是一种盐生的假谷物作物,正在越来越多的国家中种植。由于藜麦对多种非生物胁迫具有高度抗性,并且其种子具有比任何其他主要谷物更好的营养价值,因此,藜麦被视为确保全球粮食安全的未来作物。我们使用藜麦栽培种Real的近交系生成了高质量的基因组草图。藜麦基因组经历了大约430万年前的一个最近的基因组复制,除了大多数双子叶植物报道的γ古六倍体化外,还可能反映了两个藜属亲本的基因组融合。该基因组具有高度重复性(重复序列含量为64.5%),包含54 438个蛋白质编码基因和192个microRNA基因,其中99.3%以上具有糖类直系同源基因。藜麦的胁迫耐受性与参与离子和营养转运,ABA稳态和信号传导的基因的扩展以及增强的基础水平ABA反应有关。表皮盐囊细胞表现出与毛状体相似的特征,与叶片相比,与能量输入和ABA生物合成有关的基因表达明显更高。藜麦基因组序列提供了对其非凡的营养价值和盐生植物进化的见解,从而能够鉴定与盐分耐性有关的基因,并为藜麦中的分子育种提供基础。与叶片相比,与能量导入和ABA生物合成有关的基因的表达要高得多。藜麦基因组序列提供了对其非凡的营养价值和盐生植物进化的见解,从而能够鉴定与盐分耐性有关的基因,并为藜麦中的分子育种提供基础。与叶片相比,与能量导入和ABA生物合成相关的基因的表达要高得多。藜麦基因组序列提供了对其非凡的营养价值和盐生植物进化的见解,从而能够鉴定与盐分耐性有关的基因,并为藜麦中的分子育种提供基础。
更新日期:2017-11-06
down
wechat
bug