当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites
Nano Letters ( IF 10.8 ) Pub Date : 2017-11-03 00:00:00 , DOI: 10.1021/acs.nanolett.7b03238
Keith J. Dusoe 1 , Xinyi Ye 2 , Kim Kisslinger 2 , Aaron Stein 2 , Seok-Woo Lee 1 , Chang-Yong Nam 2
Affiliation  

Modulus of resilience, the measure of a material’s ability to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurements reveal a metal-like high yield strength (∼500 MPa) with an unusually low, foam-like Young’s modulus (∼7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ∼24 MJ/m3 as well as exceptional modulus of resilience per density of ∼13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.

中文翻译:

金属氧化物渗透的图案化杂化聚合物纳米复合材料中的超高弹性应变能存储。

弹性模量是材料存储和释放弹性应变能的能力的量度,对于在微/纳米机电系统中实现先进的机械驱动技术至关重要。通常,设计弹性模量是困难的,因为它要求不对称地增加屈服强度和杨氏模量,以防止它们相互缩放。如果需要在纳米规模上进行,则该任务变得更具挑战性。在这里,我们通过在光刻图形化的负性光刻胶SU-8中利用气相氧化铝的渗透,展示了每密度具有最高弹性模量之一的有机-无机杂化复合纳米柱。原位纳米力学测量显示出类似金属的高屈服强度(约500 MPa),且异常低,3以及每密度约13.4 kJ / kg的超强回弹模量,超过了大多数工程材料。杂化聚合物纳米复合材料具有重量轻,可调节的超高回弹性模量和广泛的纳米级平版印刷可图案化性,可作为需要超高机械回弹力和强度的纳米机械组件来应用。
更新日期:2017-11-05
down
wechat
bug