当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemical hydrodynamics of a downward microbubble flow for intensification of gas-fed bioreactors
AIChE Journal ( IF 3.7 ) Pub Date : 2017-10-27 12:05:30 , DOI: 10.1002/aic.16002
Manizheh Ansari 1 , Damon E. Turney 1 , Roman Yakobov 1 , Dinesh V. Kalaga 1 , Simon Kleinbart 1 , Sanjoy Banerjee 1 , Jyeshtharaj B. Joshi 2, 3
Affiliation  

Bioreactors are of interest for value-upgrading of stranded or waste industrial gases. Reactor intensification requires development of low cost bioreactors with fast gas–liquid mass transfer rate. Here we assess published reactor technology in comparison with a novel downward bubble flow created by a micro-jet array. Compared to known technology, the advanced design achieves higher volumetric gas transfer efficiency (kLa per power density) and can operate at higher kLa. We measure the effect of four reactor heights (height-to-diameter ratios of 12, 9, 6, and 3) on the gas transfer coefficient kL, total interfacial area a, liquid residence time distribution, energy consumption, and turbulent hydrodynamics. Leading models for predicting kL and a are appraised with experimental data. The results show kL is governed by “entrance effects” due to Higbie penetration dominate at short distances below the micro-jet array, while turbulence dominates at intermediate distances, and finally terminal rise velocity dominates at large distances. © 2017 American Institute of Chemical Engineers AIChE J, 2017

中文翻译:

向下的微气泡流的化学流体力学,用于强化气源生物反应器

对于滞留或废弃工业气体的价值提升,生物反应器是令人感兴趣的。反应器强化需要开发具有快速气液传质速率的低成本生物反应器。在这里,我们与微喷射器阵列产生的新型向下气泡流相比,评估了已发表的反应堆技术。与已知技术相比,先进的设计实现了更高的体积气体传输效率(每功率密度k L a),并且可以在更高的k L a下运行。我们测量了四个反应器高度(高径比为12、9、6和3)对气体传输系数k L,总界面面积a,液体停留时间分布,能量消耗和湍流流体动力学的影响。预测k L的领先模型和a均经过实验数据评估。结果表明,k L受“入口效应”的影响,这是由于Higbie穿透在微射流阵列下方的短距离内占主导地位,而湍流在中距离处占主导地位,最后终端上升速度在远距离处占主导地位。©2017美国化学工程师学会AIChE J,2017
更新日期:2017-10-28
down
wechat
bug