当前位置: X-MOL 学术Cell Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Altered neurogenesis and disrupted expression of synaptic proteins in prefrontal cortex of SHANK3-deficient non-human primate
Cell Research ( IF 28.1 ) Pub Date : 2017-10-18 , DOI: 10.1038/cr.2017.95
Hui Zhao , Zhuchi Tu , Huijuan Xu , Sen Yan , Huanhuan Yan , Yinghui Zheng , Weili Yang , Jiezhao Zheng , Zhujun Li , Rui Tian , Youming Lu , Xiangyu Guo , Yong-hui Jiang , Xiao-Jiang Li , Yong Q Zhang

Despite substantial progress made toward understanding the molecular changes contributing to autism spectrum disorders (ASD), the neuropathophysiology underlying ASD remains poorly understood1,2. Structural brain imaging in humans is valuable, but lacks resolution at the cellular level. Studies of neuropathology in humans have been hampered by the lack of high quality postmortem brains from individuals with ASD2. For more than decades, mutant mice have served as major tools to dissect the pathophysiology of ASD because of the wealth of molecular and neurobiological techniques developed for studies with rodents. Our knowledge of molecular and cellular mechanisms for ASD is mostly limited to what we have learned from genetically modified mice. However, there are significant evolutionary differences in brain structure and behavior between rodents and humans. For example, social behaviors and the organization of cerebral cortex differ significantly between primates and rodents. The cerebral neocortex comprises ~80% of the human brain and ~72% of the macaque brain, but only ~28% of the rat brain. Prefrontal cortex (PFC), a critical region for high order cognitive and social functions, is under-developed in rodents compared with primates. The unique behavioral features in human ASD have posed significant challenges to assess the translational value of many findings from ASD mouse models. The apparent evolutionary differences in brain structures and behaviors between mouse and human highlight the need of alternative animal models such as non-human primate models for ASD3.

中文翻译:

缺乏SHANK3的非人类灵长类动物前额叶皮层中神经发生的改变和突触蛋白表达的破坏

尽管在了解导致自闭症谱系障碍(ASD)的分子变化方面取得了重大进展,但仍缺乏对ASD的神经病理生理学的了解1,2。人类的结构性脑成像很有价值,但在细胞水平上却缺乏分辨率。人类神经病理学的研究因ASD2个体缺乏高质量的验尸大脑而受到阻碍。几十年来,由于为啮齿类动物研究而开发的大量分子和神经生物学技术,突变小鼠已成为解剖ASD病理生理学的主要工具。我们对ASD的分子和细胞机制的了解主要限于我们从转基因小鼠那里学到的知识。然而,啮齿动物和人类在大脑结构和行为上存在显着的进化差异。例如,在灵长类动物和啮齿动物之间,社交行为和大脑皮质的组织存在显着差异。大脑新皮层约占人类大脑的80%和猕猴的约72%,但仅占鼠脑的约28%。与灵长类动物相比,啮齿类动物的前额叶皮层(PFC)是高阶认知和社会功能的关键区域,其发育不足。人类ASD的独特行为特征对评估ASD小鼠模型的许多发现的翻译价值提出了重大挑战。小鼠和人类之间大脑结构和行为的明显进化差异突显了对替代动物模型(例如ASD3的非人类灵长类动物模型)的需求。灵长类动物和啮齿动物之间的社交行为和大脑皮层组织存在显着差异。大脑新皮层约占人类大脑的80%和猕猴的约72%,但仅占鼠脑的约28%。与灵长类动物相比,啮齿类动物的前额叶皮层(PFC)是高阶认知和社会功能的关键区域,其发育不足。人类ASD中独特的行为特征对评估ASD小鼠模型中许多发现的翻译价值提出了重大挑战。小鼠和人类之间大脑结构和行为的明显进化差异突显了对替代动物模型(例如ASD3的非人类灵长类动物模型)的需求。灵长类动物和啮齿动物之间的社交行为和大脑皮层组织存在显着差异。大脑新皮层约占人类大脑的80%和猕猴的约72%,但仅占鼠脑的约28%。与灵长类动物相比,啮齿类动物的前额叶皮层(PFC)是高阶认知和社会功能的关键区域,其发育不足。人类ASD的独特行为特征对评估ASD小鼠模型的许多发现的翻译价值提出了重大挑战。小鼠和人类之间大脑结构和行为的明显进化差异突显了对替代动物模型(例如ASD3的非人类灵长类动物模型)的需求。大脑新皮层约占人类大脑的80%和猕猴的约72%,但仅占鼠脑的约28%。与灵长类动物相比,啮齿类动物的前额叶皮层(PFC)是高阶认知和社会功能的关键区域,其发育不足。人类ASD中独特的行为特征对评估ASD小鼠模型中许多发现的翻译价值提出了重大挑战。小鼠和人类之间大脑结构和行为的明显进化差异突显了对替代动物模型(例如ASD3的非人类灵长类动物模型)的需求。大脑新皮层约占人类大脑的80%和猕猴的约72%,但仅占鼠脑的约28%。与灵长类动物相比,啮齿类动物的前额叶皮层(PFC)是高阶认知和社会功能的关键区域,其发育不足。人类ASD中独特的行为特征对评估ASD小鼠模型中许多发现的翻译价值提出了重大挑战。小鼠和人类之间大脑结构和行为的明显进化差异突显了对替代动物模型(例如ASD3的非人类灵长类动物模型)的需求。人类ASD中独特的行为特征对评估ASD小鼠模型中许多发现的翻译价值提出了重大挑战。小鼠和人类之间大脑结构和行为的明显进化差异突显了对替代动物模型(例如ASD3的非人类灵长类动物模型)的需求。人类ASD中独特的行为特征对评估ASD小鼠模型中许多发现的翻译价值提出了重大挑战。小鼠和人类之间大脑结构和行为的明显进化差异突显了对替代动物模型(例如ASD3的非人类灵长类动物模型)的需求。
更新日期:2017-10-18
down
wechat
bug